

Table of Contents

- Alcohols:
- Structure & Nomenclature
- **Physical Properties**
- **Hydrogen Bonding**
- 4. 5. 6. 7. 8. 9. **Acidity and Basicity**
- Reaction with active metals
- Conversion of 3° and 1° ROH to RX
- Reaction of ROH with HX
- Dehydration 1°, 2° and 3° Alcohols
- Hydration-Dehydration
- 11. 12. **Ethers:**
- **Structure & Nomenclature**
- 13. 14. **Physical Properties**
- **Epoxides (One type of ether)**
- 15. **Epoxide Ring Openings**
- 16. 17. Thiols:
- **Structure & Nomenclature**
- 18. 19. **Physical Properties**
- Acidity

Alcohols - Structure

- Figure 8.1 The functional group of an alcohol is an -OH (hydroxyl) group bonded to an sp^3 hybridized carbon.
 - Bond angles about the hydroxyl oxygen atom are approximately 109.5°.
- Oxygen is also sp^3 hybridized.
 - Two sp³ hybrid orbitals form sigma bonds to carbon and hydrogen.
 - The remaining two sp³ hybrid orbitals each contain an unshared pair of electrons.

Alcohols - Nomenclature

IUPAC names

- The parent chain is the longest chain that contains the -OH group.
- Number the parent chain in the direction that gives the -OH group the lower number.
- Change the suffix -e to -ol.

Common names

 Name the alkyl group bonded to oxygen followed by the word alcohol.

Alcohols - Nomenclature • Examples: HO. HO' Ethanol 1-Propanol (Propyl alcohol) 1-Butanol 2-Propanol (Ethyl alcohol) (Isopropyl alcohol) (Butyl alcohol) OH2-Butanol ec-Butyl alcohol) 2-Methyl-1-propanol (Isobutyl alcohol) 2-Methyl-2-propanol (tert-Butyl alcohol) Cyclohexanol (Cyclohexyl alcohol)

Alcohols - Nomenclature

Problem: Write the IUPAC name of each alcohol.

Alcohols - Nomenclature

- · Compounds containing
 - two -OH groups are named as diols,
 - three -OH groups are named as triols.
 - Compounds containing two -OH groups on are called glycols.

 $\begin{array}{c|cccc} CH_2CH_2 & CH_3CHCH_2 & CH_2CHCH_2 \\ | & | & | & | & | \\ OH & OH & HO & OH & HO & OH \\ 1.2-Ethanediol & 1.2-Propanediol & 1.2.3-Propanetriol \\ (Ethylene glycol) & (Propylene glycol) & (Glycerol, Glycerin) \\ \end{array}$

Alcohols - Nomenclature

- Unsaturated alcohols
 - The double bond is shown by the infix -en-.
 - The hydroxyl group is shown by the suffix -ol.
 - Number the chain to give OH the lower number.

trans-3-hexene-1-ol (E)-3-hexene-ol

Physical Properties

- Figure 8.2 Polarity of the C-O-H bond in methanol.

 (a) Partial positive charges on carbon and hydrogen and a partial negative charge on oxygen.
- (b) An electron density map showing the partial negative charge (red) and the partial positive charge (blue).

Hydrogen Bonding

- Alcohols associate in the liquid state by hydrogen bonding.
- Hydrogen bonding: The attractive force between a partial positive charge on hydrogen and a partial negative charge on a nearby oxygen, nitrogen, or fluorine atom.
 - The strength of hydrogen bonding in alcohols is approximately 2 to 5 kcal/mol.
 - Hydrogen bonds are considerably weaker than covalent bonds (for example, 110 kcal/mol for an O-H bond).
 - Nonetheless, hydrogen bonding can have a significant effect on physical properties.

Hydrogen Bonding

 Figure 8.3 The association of ethanol molecules in the liquid state.

Hydrogen Bonding Erythromycin

 Problem: Following is a structural formula for Erythromycin A, a widely used antibiotic. See next screen for questions.

Hydrogen Bonding Erythromycin

- a) How many hydroxyl groups are present? Classify each as primary, secondary, or tertiary.
- b) How many amine groups are present? Classify each as primary, secondary, or tertiary.
- c) Four of the hydroxyl groups within Erythromycin A are involved in intramolecular (internal) hydrogen bonding. One of these is pointed out on the structural formula. Note that this hydrogen bond creates a five-membered ring. Locate the other three intramolecular hydrogen bonds and specify the size of the ring created by each.

Hydrogen Bonding Erythromycin

 Solution: Shown are the four intramolecular hydrogen bonds. They create one six-membered ring and three five-membered rings.

Boiling Poin	ıs				
TABLE 8.1 Boiling Points and Solubilities in Water of Alcohols and Alkanes Grouped by Similar Molecular Weight					
Structural Formula	Name	Molecular Weight	Boiling Point (°C)	Solubility in water	
CH ₃ OH	methanol	32	65	infinite	
$\mathrm{CH_{3}CH_{3}}$	ethane	30	-89	insoluble	
$\mathrm{CH_{3}CH_{2}OH}$	ethanol	46	78	infinite	
$\mathrm{CH_{3}CH_{2}CH_{3}}$	propane	44	-42	insoluble	
$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	1-propanol	60	97	infinite	
$\mathrm{CH_{3}CH_{2}CH_{2}CH_{3}}$	butane	58	0	insoluble	
$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}OH}$	1-butanol	74	117	8 g /100 g	
$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}}$	pentane	72	36	insoluble	
$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}OH}$	1-pentanol	88	138	2.3 g /100 g	
HOCH ₂ CH ₂ CH ₂ CH ₂ OH	1,4-butanediol	90	230	infinite	
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	hexane	86	69	insoluble	

Acidity of Alcohols

 Most alcohols are about the same or slightly weaker acids than water.

$$CH_3 \ddot{\overset{\frown}{O}} - H + \vdots \ddot{\overset{\frown}{O}} - H \Longrightarrow CH_3 \ddot{\overset{\frown}{O}} \vdots + H - \ddot{\overset{\frown}{O}} + H$$

$$(pK_a = 15.5) (pK_a = 15.7)$$

$$K_{\rm a} = \frac{[{\rm CH_3O^-}][{\rm H_3O^+}]}{[{\rm CH_3OH}]} = 3.2 \times 10^{-16}$$

$$pK_a = 15.5$$

 Aqueous solutions of alcohols have the same pH as that of pure water.

TABLE 8.2 pK _a Values for Selected Alcohols in Dilute Aqueous Solution*			
Compound	Structural Formula	pK_a	
hydrogen chloride	HCI	-7	Stronger
acetic acid	CH₃COOH	4.8	acid
methanol	СН₃ОН	15.5	
water	H_2O	15.7	
ethanol	CH₃CH₂OH	15.9	
2-propanol	(CH ₃)₂CHOH	17	Weaker
2-methyl-2-propanol	(CH ₃) ₃ COH	18	acid

Basicity of Alcohols

- In the presence of strong acids, the oxygen atom of an alcohol behaves as a weak base.
 - Proton transfer from the strong acid forms an oxonium ion.

 Thus, alcohols can function as both weak acids and weak bases.

Reaction with Active Metals

- Alcohols react with Li, Na, K, and other active metals to liberate hydrogen gas and form metal alkoxides.
 - Na is oxidized to Na⁺ and H⁺ is reduced to H₂.

$$2 \text{ CH}_3\text{OH} + 2 \text{ Na} \longrightarrow 2 \text{ CH}_3\text{O}^- \text{Na}^+ + \text{H}_2$$
Sodium methoxide

- Alkoxides are somewhat stronger bases than OH-.
- Alkoxides can be used as nucleophiles in nucleophilic substitution reactions.
- They can also be used as bases in β -elimination reactions.

Conversion of ROH to RX

 Water-soluble 3° alcohols react very rapidly with HCl, HBr, and HI.

$$\begin{array}{cccc} \operatorname{CH}_3 & \operatorname{CH}_3 \\ | & | & | \\ \operatorname{CH}_3 \operatorname{COH} + \operatorname{HCl} & \xrightarrow{25\,^\circ \operatorname{C}} \operatorname{CH}_3 \operatorname{CCl} + \operatorname{H}_2 \operatorname{O} \\ | & | & | \\ \operatorname{CH}_3 & \operatorname{CH}_3 \end{array}$$
 2-Methyl- 2-Chloro-2-propanol 2-methylpropane

 Low-molecular-weight 1° and 2° alcohols are unreactive under these conditions.

Conversion of ROH to RX

 Water-insoluble 3° alcohols react by bubbling gaseous HCl through a solution of the alcohol dissolved in diethyl ether or

THF. OH
$$+$$
 HCl $\xrightarrow{0 \text{ °C}}$ Cl $+$ H $_2$ O $+$ Cl $+$ H $_2$ O $+$ CH $_3$ 1-Chloro-1-methyl-cyclohexanol cyclohexane $+$ Br + H $_2$ O $+$ Br + H $_2$ O $+$ Br + H $_2$ O $+$ 1-Butanol $+$ 1-Bromobutane (Butyl bromide)

-1° and 2° alcohols require concentrated HBr and HI to form alkyl bromides and iodides.

Reaction of a 3° ROH with HX

- 3° Alcohols react with HX by an S_N1 mechanism.
 - Step 1: Add a proton. Rapid and reversible proton transfer from the acid to the —OH group.

protonation of the —OH group converts it into a better leaving group
$$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ H \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ H \\ \end{array} \begin{array}{c} H \\ H \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ H \\ \end{array}$$

 This proton-transfer converts the leaving group from OH⁻, a poor leaving group, to H₂O, a better leaving group.

Reaction of a 3° ROH with HX

 Step 2: Break a bond to form a stable molecule or ion. Loss of H₂O gives a 3° carbocation.

$$\begin{array}{c|c} H_2O \text{ is a good leaving} & CH_3 - C \\ \hline group & CH_3 - C \\ \hline CH_3 & H \\ \end{array} \xrightarrow[SH]{} \begin{array}{c} GH_3 \\ \hline S_{N1} \\ \hline CH_3 - C^+ \\ \hline CH_3 \\ \end{array} \xrightarrow[SH]{} \begin{array}{c} CH_3 \\ \hline CH_3 - C^+ \\ \hline CH_3 \\ \hline CH_3 \\ \end{array} \xrightarrow[SH]{} \begin{array}{c} CH_3 \\ \hline CH_3 \\ \hline CH_3 \\ \hline CH_3 \\ \end{array}$$

—Step 3: Reaction of an electrophile and a nucleophile to form a new covalent bond completes the reaction.

$$\begin{array}{c} \text{chloride ion is produced in the initial} \\ \text{reaction of H}_2\text{O with HCl} \\ \text{H} \\ \overset{\circ}{\text{H}} \\ \overset{\overset$$

Reaction of a 1° ROH with HX

- 1° alcohols react with HX by an S_N2 mechanism.
 - Step 1: Add a proton. Proton transfer to OH converts
 OH⁻, a poor leaving group, to H₂O a better leaving group.

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{H} \end{array} \xrightarrow{\text{rapid and reversible}} \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_3\text{CH}_2\text{CH}_2 \\ \text{CH}_3\text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3 \\ \text{C$$

 Step 2: Reaction of a nucleophile and an electrophile to form a new covalent bond and break a bond.

$$: \overset{\bullet}{Br} : + \overset{\bullet}{CH_3CH_2CH_2CH_2} \overset{\bullet}{CH_2} \overset{\bullet}{CH_2} \overset{\bullet}{CH_3CH_2CH_2CH_2} \overset{\bullet}{CH_3CH_2CH_2CH_2} \overset{\bullet}{Br} : + \overset{\bullet}{CH_3CH_2CH_2} \overset{\bullet}{CH_3CH_2} \overset{\bullet}{CH_2} \overset{\bullet}{CH_3CH_2} \overset{\bullet}{CH_2} \overset{\bullet}{CH_2} \overset{\bullet}{CH_2} \overset{\bullet}{CH_2$$

Reaction of ROH with HX

 Reactions are governed by a combination of electronic and steric effects

Dehydration of Alcohols

- An alcohol can be converted to an alkene by elimination of —H and —OH from adjacent carbons (a 2-elimination).
 - 1° alcohols must be heated at high temperature in the presence of an acid catalyst, such as H₂SO₄ or H₃PO₄.
 - 2° alcohols undergo dehydration at somewhat lower temperatures.
 - 3° alcohols often require temperatures at or only slightly above room temperature.

Dehydration of Alcohols

– examples:

$$CH_{3}CH_{2}OH \xrightarrow{H_{2}SO_{4} \atop 180 \text{ °C}} CH_{2} = CH_{2} + H_{2}O$$

$$OH \xrightarrow{H_{2}SO_{4} \atop 140 \text{ °C}} + H_{2}O$$

$$Cyclohexanol Cyclohexene$$

$$CH_{3} \xrightarrow{H_{2}SO_{4} \atop 50 \text{ °C}} CH_{3} \xrightarrow{CH_{3}C = CH_{2} + H_{2}O}$$

$$CH_{3} \xrightarrow{CH_{3}C = CH_{2} + H_{2}O}$$

Dehydration of Alcohols

 When isomeric alkenes are obtained, the more stable alkene (the one with the greater number of substituents on the double bond) generally predominates (Zaitsev's rule).

Dehydration of a 2° Alcohol

- · A three-step mechanism
 - Step 1: Add a proton. Proton transfer from H₃O⁺ to the
 OH group converts OH⁻, a poor leaving group, into H₂O, a better leaving group.

Dehydration of a 2° Alcohol

Step 2: Break a bond to form a stable molecule or ion.
 Loss of H₂O gives a carbocation intermediate.

 Step 3: Take a proton away. Proton transfer from an adjacent carbon to H₂O gives the alkene and regenerates the acid catalyst.

$$\begin{array}{c} \text{the acid is regenerated, thus} \\ \text{CH}_{3}-\overset{*}{\text{CH}}-\overset{*}{\text{CH}}-\text{CH}_{3}+\vdots\overset{*}{\text{CH}}-\text{CH}_{3}+\vdots\overset{*}{\text{CH}}-\text{CH}_{3}+\text{H}-\overset{*}{\text{CH}}-\text{H}} \\ \text{H} \end{array}$$

Dehydration of a 1° Alcohol

- A two-step mechanism
 - Step 1: Add a proton. Proton transfer from the acid gives an oxonium ion.

 Step 2: Take a proton away and loss of H₂O gives the alkene and regenerates the acid catalyst.

the regenerated acid catalyst water has acted as the leaving group
$$H = \ddot{O} + \ddot{O} +$$

Hydration-Dehydration

 Acid-catalyzed hydration of an alkene and dehydration of an alcohol are competing processes.

An alkene

An alcohol

- Large amounts of water favor alcohol formation.
- Scarcity of water or experimental conditions where water is removed favor alkene formation.

Ethers - Structure

- Figure 8.4 The functional group of an ether is an oxygen atom bonded to two carbon atoms.
 - Oxygen is sp^3 hybridized with bond angles of approximately 109.5°.
 - In dimethyl ether, the C-O-C bond angle is 110.3°.

Ethers - Nomenclature

- IUPAC
 - The parent alkane is longest carbon chain.
 - Name the -OR group as an alkoxy substituent.
- Common names:
 - Name the groups bonded to oxygen followed by the word ether.

 $\mathrm{CH_3CH_2OCH_2CH_3}$ Ethoxyethane $\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3OCCH_3} \\ | \\ \operatorname{CH_3} \end{array}$

2-methyl-2-methoxypentanol (tert-Butylmethyl ether) OH

OH

OH

OH

CH₂CH₃

(1R, 2R)-2-ethoxycyclohexanol

Ethers - Nomenclature

 Although cyclic ethers have IUPAC names, their common names are more widely used.

Ethers - Physical Properties

- Figure 8.5 Ethers are polar molecules.
 - Each C-O bond is polar covalent.
 - However, only weak attractive forces exist between ether molecules in the pure liquid.

Ethers - Physical Properties

Table 8.3 Boiling Points and Solubilities in Water of Some Alcohols and Ethers of Comparable Molecular Weight

Structural Formula	Name	Molecular Weight	Boiling Point (°C)	Solubility in Water
Structural Formula	Name	weight	Point (°C)	in water
CH ₃ CH ₂ OH	ethanol	46	78	infinite
CH ₃ OCH ₃	dimethyl ether	46	-24	7.8 g/100 g
CH ₃ CH ₂ CH ₂ CH ₂ OH	1-butanol	74	117	7.4 g/100 g
CH ₃ CH ₂ OCH ₂ CH ₃	diethyl ether	74	35	8 g/100 g
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	1-pentanol	88	138	2.3 g/100 g
HOCH ₂ CH ₂ CH ₂ CH ₂ OH	1,4-butanediol	90	230	infinite
CH ₃ CH ₂ CH ₂ CH ₂ OCH ₃	butyl methyl ether	88	71	slight
CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃	ethylene glycol dimethyl ether	90	84	infinite

Ethers - Physical Properties

Figure 8.6 Ethers are hydrogen bond acceptors only.

Ethers - Physical Properties

- The effect of hydrogen bonding is illustrated by comparing the boiling points of ethanol and dimethyl ether.

CH₃CH₉OH CH₃OCH₃ Ethanol Dimethyl ether bp 78 °C bp −24 °C

Epoxides

• Epoxide: A cyclic ether in which oxygen is one atom of a three-membered ring.

of an epoxide

 H_2C CH_2

- Ethylene oxide is synthesized from ethylene and O₂.

$$2 CH_2 = CH_2 + O_2 \xrightarrow{\text{Ag}} 2 H_2 C \xrightarrow{\text{CH}_2} CH_2$$

Ethylene

Ethylene oxide

Epoxide Ring Openings

- The mechanism of acid-catalyzed hydrolysis of an epoxide involves three steps.
- Step 1: Add a proton
- Step 2. Reaction of an electrophile and a nucleophile to form a new covalent bond.
- Step 3. Take away a proton.

$$\begin{array}{c} \text{this carbon has undergone} \\ \text{inversion of configuration} \\ \text{inversion of configura$$

Epoxide Ring Openings

 The value of epoxides lies in the number of nucleophiles that will bring about ring opening, and the combinations of functional groups that can be synthesized from them.

Epoxides as Building Blocks

 Following are structural formulas for two common drugs, each synthesized in part with ethylene oxide as a building block.

$$\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Thiols - Structure

• Figure 8.7 The functional group of a thiol is an - SH (sulfhydryl) group bonded to an sp^3 hybridized carbon.

Thiols - Nomenclature

IUPAC names

- The parent chain is the longest chain that contains the -SH group.
 - Add -thiol to the name of the parent chain.

Common names

- Name the alkyl group bonded to sulfur followed by the word mercaptan.
- Alternatively, indicate the -SH by the prefix mercapto.

 $\begin{array}{c} CH_3 \\ CH_3CH_2SH \\ Ethanethiol \\ (Ethyl mercaptan) \end{array} \begin{array}{c} CH_3 \\ CH_3CHCH_2SH \\ 2-Methyl-1-propanethiol \\ (Isobutyl mercaptan) \end{array} \begin{array}{c} CH_3 \\ CH_2CH_2OH \\ 2-Mercaptoethanol \\ 2-Me$

Thiols - Physical Properties

Low-molecular-weight thiols have a STENCH

Thiols - Physical Properties

- The difference in electronegativity between S and H is 2.5
 2.1 = 0.4
- Because of their low polarity, thiols
 - show little association by hydrogen bonding.
 - have lower boiling points and are less soluble in water than alcohols of comparable MW.

Number of Carbon Atoms				
Thiol	Boiling Point (°C)	Alcohol	Boiling Point (°C)	
methanethiol	6	methanol	65	
ethanethiol	35	ethanol	78	
1-butanethiol	98	1-butanol	117	

Acidity of Thiols

• Thiols are stronger acids than alcohols.

```
CH_3CH_2OH + H_2O \Longrightarrow CH_3CH_2O^- + H_3O^+ \qquad pK_a = 15.9
CH_3CH_2SH + H_2O \Longrightarrow CH_3CH_2S^- + H_3O^+ \qquad pK_a = 8.5
```

• Thiols react with strong bases to form salts.