NAME:

Instructions:

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
 - (a) put your name on your exam;
 - (b) show all your work, using only the exam papers, including the back of this sheet if necessary;
 - (c) specify the correct units, if any, for your final answers;
 - (d) use an appropriate number of significant digits for final numerical answers;
 - (e) stop writing and close your exam immediately when time is called.

Other notes:

- Problem 1 (covering all of page 3) of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

1. **40** points.

- (a) Name the process (for example, "collisional relaxation") that occurs in each of the experiments described below:
 - i. Benzene is excited to its ${}^3B_{1u}$ excited state, which emits light over a period of several seconds to return to the singlet ground state.
 - ii. When the N—H stretches of alanine, NH₂CH(CH₃)COOH, are highly excited by infrared radiation, within a few vibrational periods excited stretching states of the C—H bonds in the CH₃ group are detected.
 - iii. This one has **2** processes. Acetylene is excited by 187 nm radiation. After about 10^{-10} s, an allowed emission transition in hydrogen atom is observed. (A single vibrational period in acetylene is about 10^{-12} s.)
- (b) Estimate the following energies.
 - i. The $v = 3 \rightarrow 5$ transition energy for a molecule with a vibrational constant of $1000\,\mathrm{cm}^{-1}$.
 - ii. The $J=3 \to 5$ transition energy for a molecule with a rotational constant of $1.0\,\mathrm{cm}^{-1}$.
- (c) The ground state vibrational constant of ⁶⁵Cu³⁵Cl is 415.3 cm⁻¹. Estimate the force constant in SI units (two significant digits is fine).
- (d) The interaction energy between two rotating water molecules averages to $-1.0 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$. If the distance between them is cut in half, what is the new interaction energy?

- 2. A molecule with the molecular formula N_xH_y has the following complete set of predicted vibrational constants, with the symmetry representations given:
 - i) 1347 cm⁻¹ a_u
 - ii) 1360 cm⁻¹ b_u
 - iii) $1601\,\mathrm{cm}^{-1}$ a_g
 - iv) $1651\,\mathrm{cm}^{-1}$ a_g
 - $v) = 3220 \, \text{cm}^{-1} \quad a_q$
 - vi) 3252 cm⁻¹ b_u
 - (a) How many atoms are in the molecule?
 - (b) What is the molecular formula (in other words, what are the values of x and y)?
 - (c) What is the point group of the molecule?
 - (d) Draw a Lewis structure of the molecule.
 - (e) For any **three** of the modes in the list above, either label the type of motion *clearly* or sketch a picture showing the displacement arrows. The picture doesn't have to be a perfect Lewis structure, but identify which mode (i vi) it represents.

- 3. The Morse oscillator has energy levels $E_v = \omega_e \left(v + \frac{1}{2}\right) \omega_e x_e \left(v + \frac{1}{2}\right)^2$ where $\omega_e x_e = \omega_e^2/(4D_e)$.
 - (a) Find the value of v, in terms of ω_e and D_e , at which the $v \to v+1$ transition energy becomes zero.
 - (b) Find the value of E_v for this vibrational state in terms of ω_e and D_e .

4. The distribution of charges given below is the same as we used to derive the formula for $u_{2-2}(R)$, except that one of the charges on molecule B has been doubled.

Find an expression for the potential energy u(R) between A and B in terms of μ_A , q_B , and R. use **either one** of the following two methods:

- (a) Start by writing the interaction between these two molecules as the sum of the iondipole interactions between each charge on molecule B with the dipole moment of molecule A. Then simplify the result using the assumption that $R \gg d_{\rm B}$.
- (b) Decompose the charges on molecule B into separate monopole and dipole contributions. Then add the potential energies for the (dipole A)–(monopole B) interaction and for the (dipole A)–(dipole B) interactions.

Fundamental Constants

Avogadro's number	\mathcal{N}_A	$6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2}$	$5.29177249 \cdot 10^{-11} \text{ m}$
Boltzmann constant	$k_{ m B}$	$1.380658 \cdot 10^{-23} \text{ J K}^{-1}$
electron rest mass	m_e	$9.1093897 \cdot 10^{-31} \text{ kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \text{ C}$
permittivity factor	$4\pi\epsilon_0$	$1.113 \cdot 10^{-10} \mathrm{C^2 J^{-1} m^{-1}}$
gas constant	R	$8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$
	R	$0.08314510~{\rm L~bar~K^{-1}~mol^{-1}}$
	R	$0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$
hartree	$E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2\hbar^2}$	$4.35980 \cdot 10^{-18} \text{ J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \text{ J s}$
	\hbar	$1.05457266 \cdot 10^{-34} \text{ J s}$
proton rest mass	m_p	$1.6726231 \cdot 10^{-27} \text{ kg}$
neutron rest mass	m_n	$1.6749286 \cdot 10^{-27} \text{ kg}$
speed of light	c	$2.99792458 \cdot 10^8 \text{ m s}^{-1}$

Unit Conversions

	K	${\rm cm}^{-1}$	${\rm kJ~mol^{-1}}$	$kcal mol^{-1}$	erg	kJ
kHz =	$4.799 \cdot 10^{-8}$	$3.336 \cdot 10^{-8}$	$3.990 \cdot 10^{-10}$	$9.537 \cdot 10^{-11}$	$6.626 \cdot 10^{-24}$	$6.626 \cdot 10^{-34}$
MHz =	$4.799 \cdot 10^{-5}$	$3.336 \cdot 10^{-5}$	$3.990 \cdot 10^{-7}$	$9.537 \cdot 10^{-8}$	$6.626 \cdot 10^{-21}$	$6.626 \cdot 10^{-31}$
GHz =	$4.799 \cdot 10^{-2}$	$3.336 \cdot 10^{-2}$	$3.990 \cdot 10^{-4}$	$9.537 \cdot 10^{-5}$	$6.626 \cdot 10^{-18}$	$6.626 \cdot 10^{-28}$
K =	1	0.6950	$8.314 \cdot 10^{-3}$	$1.987 \cdot 10^{-3}$	$1.381 \cdot 10^{-16}$	$1.381 \cdot 10^{-26}$
$cm^{-1} =$	1.4388	1	$1.196 \cdot 10^{-2}$	$2.859 \cdot 10^{-3}$	$1.986 \cdot 10^{-16}$	$1.986 \cdot 10^{-26}$
$kJ \text{ mol}^{-1} =$	$1.203 \cdot 10^2$	83.59	1	0.2390	$1.661 \cdot 10^{-14}$	$1.661 \cdot 10^{-24}$
$kcal mol^{-1} =$	$5.032 \cdot 10^2$	$3.498\cdot 10^2$	4.184	1	$6.948 \cdot 10^{-14}$	$6.948 \cdot 10^{-24}$
eV =	$1.160 \cdot 10^4$	$8.066 \cdot 10^{3}$	96.49	23.06	$1.602 \cdot 10^{-12}$	$1.602 \cdot 10^{-22}$
hartree =	$3.158 \cdot 10^5$	$2.195\cdot 10^5$	$2.625\cdot 10^3$	$6.275\cdot 10^2$	$4.360 \cdot 10^{-11}$	$4.360 \cdot 10^{-21}$
erg =	$7.243 \cdot 10^{15}$	$5.034 \cdot 10^{15}$	$6.022 \cdot 10^{13}$	$1.439 \cdot 10^{13}$	1	10^{-10}
J =	$7.243 \cdot 10^{22}$	$5.034 \cdot 10^{22}$	$6.022 \cdot 10^{20}$	$1.439 \cdot 10^{20}$	10^{7}	10^{-3}
$dm^3 bar =$	$7.243 \cdot 10^{24}$	$5.034 \cdot 10^{24}$	$6.022 \cdot 10^{22}$	$1.439 \cdot 10^{22}$	$1.000 \cdot 10^9$	0.1000
kJ =	$7.243 \cdot 10^{25}$	$5.034 \cdot 10^{25}$	$6.022 \cdot 10^{23}$	$1.439 \cdot 10^{23}$	10^{10}	1

harmonic osc.
$$\eta_{v}(R) = A_{v}H_{v}(y)e^{-(R-R_{e})^{2}/(2c^{2})}, \qquad c = \left(\frac{\hbar^{2}}{k\mu}\right)^{1/4}$$

$$E_{v} = \omega_{e}\left(v + \frac{1}{2}\right)$$
 vibration
$$E_{\text{vib}} = \omega_{e}\left(v + \frac{1}{2}\right) - \omega_{e}x_{e}\left(v + \frac{1}{2}\right)^{2} + \omega_{e}y_{e}\left(v + \frac{1}{2}\right)^{3} + \dots$$

$$\omega_{e} = \hbar\sqrt{\frac{k}{\mu}} \qquad \omega_{e}\left(\text{cm}^{-1}\right) = 130.28\sqrt{\frac{k\left(\text{N}\,\text{m}^{-1}\right)}{\mu\left(\text{amu}\right)}}$$
 Morse potential
$$U_{\text{M}}(R) = D_{e}\left\{\left[1 - e^{-\beta(R-R_{e})}\right]^{2} - 1\right\}, \qquad \beta \approx \sqrt{\frac{k}{2D_{e}}}$$

$$E_{\text{M},v} = \omega_{e}\left(v + \frac{1}{2}\right) - \omega_{e}x_{e}\left(v + \frac{1}{2}\right)^{2}$$
 rotation
$$E_{\text{rot}} = B_{v}J(J + 1) - D_{v}[J(J + 1)]^{2} + \dots$$

$$B(\text{cm}^{-1}) = \frac{16.858}{I\left(\text{amu}\,\text{Å}^{2}\right)} = \frac{16.858}{\mu\left(\text{amu}\right)\left[R(\text{Å})\right]^{2}} \text{ for diatomics}$$
 monopole-dipole:
$$u_{1-2}(R) = -\frac{\mu_{\text{A}}q_{\text{B}}}{R^{2}}$$

dipole-dipole:
$$u_{2-2}(R) = -\frac{R^2}{(4\pi\epsilon_0)R^3}$$
 dipole-dipole:
$$\langle u_{2-2}\rangle_{N,\theta,\phi} = -\frac{2\mu_{\rm A}^2\mu_{\rm B}^2}{(4\pi\epsilon_0)^2 3k_{\rm B}TR^6},$$

Molecule	μ (amu)	R_e (Å)	$B_e \text{ (cm}^{-1})$	$\alpha_e \; (\mathrm{cm}^{-1})$	$D (10^{-6} \text{ cm}^{-1})$	$\omega_e \; (\mathrm{cm}^{-1})$	$\omega_e x_e \; (\mathrm{cm}^{-1})$
$^{1}\mathrm{H}^{1}\mathrm{H}$	0.50	0.742	60.8536	3.0622	46660	4401.21	121.34
$^{1}\mathrm{H}^{2}\mathrm{D}$	0.67	0.742	45.6378	1.9500		3811.92	90.71
$^2\mathrm{D}^2\mathrm{D}$	1.01	0.742	30.442	1.0623		3118.46	117.91
$^{1}{ m H}^{19}{ m F}$	0.96	0.917	20.9557	0.798	2150	4138.32	89.88
$^{1}\mathrm{H}^{35}\mathrm{Cl}$	0.98	1.275	10.5934	0.3702	532	2990.95	52.82
$^1\mathrm{H}^{79}\mathrm{Br}$	1.00	1.414	8.3511	0.226	372	2649.67	45.21
$^{1}{ m H}^{127}{ m I}$	1.00	1.609	3.2535	0.0608	526	2309.60	39.36
$^{2}{\rm D}^{19}{\rm F}$	1.82	0.917	11.0000	0.2907	585	2998.19	45.76
$^{12}{\rm C}^{16}{\rm O}$	6.86	1.128	1.9313	0.0175	6	2169.82	13.29
$^{14}{ m N}^{14}{ m N}$	7.00	1.098	1.9987	0.0171	6	2358.07	14.19
$^{14}{\rm N}^{16}{\rm O}^{+}$	7.47	1.063	1.9982	0.0190		2377.48	16.45
$^{14}{ m N}^{16}{ m O}$	7.47	1.151	1.7043	0.0173	-37	1904.41	14.19
$^{14}{ m N}^{16}{ m O}^{-}$	7.47	1.286	1.427			1372	8
$^{16}{\rm O}^{16}{\rm O}$	8.00	1.207	1.4457	0.0158	5	1580.36	12.07
$^{19}{ m F}^{19}{ m F}$	9.50	1.418	0.8828			891.2	
$^{35}\mathrm{Cl}^{35}\mathrm{Cl}$	17.48	1.988	0.2441	0.0017	0.2	560.50	2.90
$^{79}\mathrm{Br}^{79}\mathrm{Br}$	39.46	2.67	0.0821	0.0003	0.02	325.29	1.07
$^{127}{ m I}^{79}{ m Br}$	48.66	2.470	0.0559	0.0002	0.008	268.71	0.83
$^{127}{ m I}^{127}{ m I}$	63.45	2.664	0.0374	0.0001	-0.005	214.52	0.61
$^{23}\mathrm{Na^{23}Na}$	11.49	3.077	0.1548	0.0009	0.7	159.13	0.73
$^{133}\mathrm{Cs}^{133}\mathrm{Cs}$	66.45	4.47	0.0127	0.00003	0.005	42.02	0.08