Chem 130, Elementary Organic Chemistry

CHAPTER ONE

Covalent Bonding and Shapes of Molecules

Table of Contents

- 1. Introduction
- 2. Electronic Structures of Atoms
- 3. Lewis structures & Lewis Model of Bonding
- 4. Electronegativity
- 5. Ionic Bonds
- 6. Polar Covalent Bonds
- 7. Polarity of Molecules
- 8. Drawing of Lewis Structures of Molecules
- 9. Formal Charges on Atoms (in Molecules)
- 10. Octet Rule and Hybridizations
- 11. Shape of Molecules and VSEPR
- 12. Polar and Non-Polar Molecules
- 13. Resonance
- 14. Hybrid orbitals
- 15. Functional Groups

Lewis Structures

- Gilbert N. Lewis
- Valence shell: The outermost electron shell of an atom.
- Valence electrons: Electrons in the valence shell of an atom. These electrons are used in forming chemical bonds.
- Lewis structure of an atom
 - The symbol of the atom represents the nucleus and all inner shell electrons.
 - Dots represent electrons in the valence shell of the atom.

Lewis Model of Bonding

- Atoms bond together so that each atom in the bond acquires the electron configuration of the noble gas nearest it in atomic number.
 - An atom that gains electrons becomes an anion.
 - An atom that loses electrons becomes a cation.
 - lonic bond: A chemical bond resulting from the electrostatic attraction of an anion and a cation.
 - Covalent bond: A chemical bond resulting from two atoms <u>sharing</u> one or more pairs of electrons.
- We classify chemical bonds as ionic, polar covalent, and nonpolar covalent based on the difference in electronegativity between the bonded atoms.

- Electronegativity (EN)
 - The intrinsic ability of an atom to attract the shared electrons in a covalent bond
 - Electronegativities are based on an arbitrary scale, with F the most electronegative (EN = 4.0) and Cs the least (EN = 0.7)

Electronegativity

- **Electronegativity**: A measure of the force of an atom's attraction for the electrons it shares in a chemical bond with another atom.
- Pauling scale
 - Increases from left to right within a period.
 - Increases from bottom to top in a group.

Electronegativity							
TABLE 1.5 Classification of Chemical Bonds							
Difference in Electronegativity between Bonded Atoms	Type of Bond	Most Likely Formed Between					
Less than 0.5 0.5 to 1.9 Greater than 1.9	Nonpolar covalent Polar covalent Ionic	Two nonmetals or a nonmetal and a metalloid A metal and a nonmetal					

Ionic Bonds

 An ionic bond forms by the transfer of electrons from the valence shell of an atom of lower electronegativity to the valence shell of an atom of higher electronegativity.

$$Na(1s^2 2s^2 2p^6 3s^1) + F(1s^2 2s^2 2p^5) \longrightarrow Na^+(1s^2 2s^2 2p^6) + F^-(1s^2 2s^2 2p^6)$$

 We show the transfer of a single electron by a single-headed (barbed) curved arrow.

$$Na^+ F^- \longrightarrow Na^+ F^-$$

Polar Covalent Bonds

Lithium fluoride has an ionic bond

Ethane has a covalent bond. The electrons are shared equally between the carbon atoms

Polar Covalent Bonds

- In a polar covalent bond:
 - The more electronegative atom has a partial negative charge, indicated by the symbol δ –.
 - The less electronegative atom has a partial positive charge, indicated by the symbol δ +.
- In an electron density model:
 - Red indicates a region of high electron density.
 - Blue indicates a region of low electron density.

 Molecules containing polar bonds are not necessarily polar as a whole, for example

(1)
$$BF_3$$
 ($\mu = 0$ D) (2) CCI_4 ($\mu = 0$ D)

$$CI$$

$$F$$

$$F$$
(trigonal planar) (tetrahedral)

Drawing Lewis Structures

- To draw a Lewis structures:
 - Determine the number of valence electrons in the molecule or ion.
 - Determine the connectivity (arrangement) of atoms.
 - Connect the atoms by single line between atoms.
 - Arrange the remaining electrons so that each atom has a complete valence shell.
 - Show bonding electrons as single lines.
 - Show nonbonding electrons as pairs of dots.
 - Atoms share 1 pair of electrons in a single bond, 2 pairs in a double bond, and 3 pairs in a triple bond.

Lewis Structures- Table 1.6

CH₄ (8) NH₃ (8) Methane Ammonia

Lewis Structures Table 1.6

$$H-C\equiv C-H$$

C₂H₂ (10) Acetylene

$$H$$
 $C=C$

C₂H₄ (12) Ethylene

$$H$$
C= $\ddot{0}$

H₂CO₃ (24) Carbonic acid

Lewis Structures

- In <u>neutral molecules</u> containing
 C, H, N, O, and halogen (X)
 - Hydrogen has one bond.
 - Carbon has 4 bonds and no unshared electrons.
 - Nitrogen has 3 bonds and 1 unshared pair of electrons.
 - Oxygen has 2 bonds and 2 unshared pairs of electrons.
 - Halogen has 1 bond and 3 unshared pairs of electrons.

Formal Charge

- Formal charge: the charge on an atom in a molecule or polyatomic ion.
 - Write a Lewis structure for the molecule or ion.
 - Assign each atom all its unshared (nonbonding) electrons and one-half its shared (bonding) electrons.
 - Compare this number with the number of valence electrons in the neutral, unbonded atom.
 - If the number is less than that assigned to the unbonded atom,
 the atom has a positive formal charge.
 - If the number is greater, the atom has a negative formal charge.

Formal charge =
$$\begin{array}{c} \text{Number of valence} \\ \text{electrons in neutral} \\ \text{unbonded atom} \end{array}$$
 - $\left(\begin{array}{c} \text{All unshared} \\ \text{electrons} \end{array}\right)$ + $\begin{array}{c} \text{One-half of all} \\ \text{shared electrons} \end{array}$

Lewis Structures

- Problem: Which is an acceptable Lewis structure (formal charges are not shown) for carbon monoxide, CO? For an acceptable structure, assign formal charges as appropriate.
 - (a) C≡O:
- (c) C=0
- (b) :c≡o:
- (d): C-O:

Valence-shell Electron-Pair Repulsion

- VSEPR is based on two concepts.
 - Atoms are surrounded by regions of electron density.
 - Regions of electron density repel each other.

VSEPR

- Problem: Draw a Lewis structure and predict all bond angles and all hybridizations for all atoms for these molecules and ions.
 - (a) NH_4 +
- (b) CH₃NH₂
- (c) CH₃OH

- (d) $CH_3CH = CH_2$
- (e) H₂CO₃
- (f) HCO₃-

- (g) CH₃CHO
- (g) CH₃COOH
- (h) BF₄-

Polar and Nonpolar Molecules

- A molecule with polar bonds is nonpolar if:
 - The vector sum of its bonds dipoles is zero (that is, the bond dipoles cancel each other).
 - Carbon dioxide has two polar covalent bonds and because of its geometry, is a nonpolar molecule.

two bond dipoles of equal strength will cancel when oriented in opposite directions

Carbon dioxide (a nonpolar molecule)

Polar and Nonpolar Molecules

 A water molecule has two polar covalent bonds and, because of its geometry, is a polar molecule.

the vector sum (red) of the bond dipoles (blue) situates the center of partial positive charge (δ^+) in between the two hydrogen atoms

Water (a polar molecule)

Polar and Nonpolar Molecules

 An ammonia molecule has three polar covalent bonds, and because of its geometry,
 is a polar molecule

the center of partial positive charge (δ +) is midway between the three hydrogen atoms

Ammonia (a polar molecule)

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.

Polar and Nonpolar Molecules

- Chloromethane and formaldehyde are polar molecules.
- Acetylene is a nonpolar molecule.

Resonance

 A way to describe molecules and ions for which no single Lewis structure provides a truly accurate representation.

 Figure 1.11 Three Lewis structures for the carbonate ion. Each implies that one carboncarbon bond is different from the other two.

Resonance

- Linus Pauling 1930s
 - Many molecules and ions are best described by writing two or more Lewis structures.
 - Individual Lewis structures are called contributing structures.
 - Connect individual contributing structures by a double-headed arrow.
 - The molecule or ion is a hybrid of the various contributing structures.

Resonance

 Figure 1.12 The carbonate ion as a hybrid of three equivalent contributing structures. Curved arrows show the redistribution of valence electrons between one contributing structure and the next.

Resonance

- Curved arrow: A symbol used to show the redistribution of valence electrons.
- In using curved arrows, there are only two allowed types of electron redistribution:
 - from a bond to an adjacent atom.
 - from an atom to an adjacent bond.
- Electron pushing by the use of curved arrows is a survival skill in organic chemistry.
 - learn it well!

Resonance

- All acceptable contributing structures must:
- 1. Have the same number of valence electrons.
- 2. Obey the rules of covalent bonding.
 - No more than 2 electrons in the valence shell of H.
 - No more than 8 electrons in the valence shell of a 2nd period element.
 - 3rd period elements may have up to 12 electrons in their valence shells.
- 3. Differ only in distribution of valence electrons.
- 4. Have the same total number of paired and unpaired electrons.

Resonance

 Examples of ions and a molecule best represented as resonance hybrids. Draw contributing structures for each resonance hybrid.

> carbonate ion CO_3^{2-} acetate ion CH_3COO^{-} acetone CH_3COCH_3

Resonance

- Problem: Nitrous oxide, N₂O, laughing gas, is a colorless, nontoxic, tasteless, and odorless gas. Because it is soluble in vegetable oils (fats), it is used as a propellant in whipped toppings.
 - (a) How many valence electrons are present in nitrous oxide?
 - (b) Write two equivalent contributing structures for this molecule. The connectivity is N—N—O. Be certain to show formal charges, if any are present.
 - (c) Explain why the following is not an acceptable contributing structure.

Hybrid Orbitals							
TABLE 1.8 Covalent Bonding of Carbon							
Groups Bonded to Carbon	Orbital Hybridization	Predicted Bond Angles	Types of Bonds to Carbon	Example	Name		
4	sp^3	109.5°	four sigma bonds	$\begin{array}{ccc} H & H \\ & \\ H - C - C - H \\ & \\ H & H \end{array}$	ethane		
3	sp²	120°	three sigma bonds and one pi bond	$^{\mathrm{H}}$ C=C $^{\mathrm{H}}$	ethylene		
2	sp	180°	two sigma bonds and two pi bonds	н−с≡с−н	acetylene		

Functional Groups

- Functional Group: An atom or group of atoms
 within a molecule that shows a characteristic set of
 physical and chemical properties.
- Functional groups are important for three reasons, they are:
 - The units by which we divide organic compounds into classes.
 - The sites of characteristic chemical reactions.
 - The basis for naming organic compounds.

Functional Groups

Alcohol: A compound that contains an –OH
 (hydroxyl group) bonded to a tetrahedral carbon atom.

Functional Groups

- Amine: A compound that contains an amino group: a nitrogen atom bonded to one, two, or three carbon atoms.
 - Amines are classified as 1°, 2°, and 3° according to the number of carbon atoms bonded directly to the nitrogen atom.

Functional Groups • Carbonyl group (C=O) of aldehydes and ketones. Functional An aldehyde group CH₃CH Functional An aldehyde Functional A ketone

group

