

Table	e of Contents, Alkanes & Cycloalkanes
1.	Sources of Alkanes – Hydrocarbons
2.	Structures of Hydrocarbons
3.	Constitutional Isomers
4.	IUPAC Nomenclature – How to Name Hydrocarbons
5.	Classification of Carbons (and Hydrogens)
6.	Cycloalkanes and naming
7.	IUPAC – A general system
8.	Conformations of linear Hydrocarbons
9.	Conformations of Cycloalkanes
10.	Cyclohexane: Chair and Boat Conformations
11.	Cis-Trans Isomerism
12.	Physical Properties of hydrocarbons
13.	Other cool hydrocarbons (C-60 and diamond)

Sources of Alkanes

Gasoline

- The demand of gasoline is much greater than that supplied by the gasoline fraction of petroleum
- Converting hydrocarbons from other fractions of petroleum into gasoline by "*catalytic cracking*"

Structures of Hydrocarbons

- Hydrocarbon: A compound composed only of carbon and hydrogen.
- Saturated hydrocarbon: A hydrocarbon containing only carbon-carbon single bonds.
- Alkane: A saturated hydrocarbon whose carbons are arranged in an open chain.
- Aliphatic hydrocarbon: An alternative name for an alkane.

Alkanes					
 Alkanes have the general formula C_nH_{2n+2} TABLE 3.1 Names, Molecular Formulas, and Condensed Structural Formulas for the First 20 Alkanes with Unbranched Chains 					
Name	Molecular Formula	Condensed Structural Formula	Name	Molecular Formula	Condensed Structural Formula
methane	CH_4	CH_4	undecane	$C_{11}H_{24}$	$\mathrm{CH}_3(\mathrm{CH}_2)_9\mathrm{CH}_3$
ethane	C_2H_6	CH_3CH_3	dodecane	$C_{12}H_{26}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{10}\mathrm{CH}_3$
propane	C_3H_8	$\rm CH_3\rm CH_2\rm CH_3$	tridecane	$\mathrm{C}_{13}\mathrm{H}_{28}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{11}\mathrm{CH}_3$
butane	$\mathrm{C_4H_{10}}$	$CH_3(CH_2)_2CH_3$	tetradecane	$C_{14}H_{30}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{12}\mathrm{CH}_3$
pentane	C_5H_{12}	$\rm CH_3(\rm CH_2)_3\rm CH_3$	pentadecane	$\mathrm{C_{15}H_{32}}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{13}\mathrm{CH}_3$
hexane	C_6H_{14}	$CH_3(CH_2)_4CH_3$	hexadecane	$\mathrm{C}_{16}\mathrm{H}_{34}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{14}\mathrm{CH}_3$
heptane	C_7H_{16}	$\mathrm{CH}_3(\mathrm{CH}_2)_5\mathrm{CH}_3$	heptadecane	$C_{17}H_{36}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{15}\mathrm{CH}_3$
octane	C_8H_{18}	$\mathrm{CH}_3(\mathrm{CH}_2)_6\mathrm{CH}_3$	octadecane	$C_{18}H_{38}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{16}\mathrm{CH}_3$
nonane	C_9H_{20}	$CH_3(CH_2)_7CH_3$	nonadecane	$C_{19}H_{40}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{17}\mathrm{CH}_3$
decane	$C_{10}H_{22}$	$\mathrm{CH}_3(\mathrm{CH}_2)_8\mathrm{CH}_3$	eicosane	$\mathrm{C}_{20}\mathrm{H}_{42}$	$\mathrm{CH}_3(\mathrm{CH}_2)_{18}\mathrm{CH}_3$

<u> </u>	 The potenti from just the hydrogen is 	nal Isomerism ial for constitutional is ne elements carbon ar s enormous.	omerism nd
	Carbon Atoms	Constitutional Isomers	
	1	0	
	5	3	
	10	75	
	15	4,347	
	25	36,797,588	

<u>Cycloalkanes</u>

- ♦ General formula C_nH_{2n}
- Five- and six-membered rings are the most common.
- Structure and nomenclature
 - Prefix the name of the corresponding open-chain alkane with cyclo-, name each substituent on the ring.
 - If only one substituent, no need to give it a number.
 - If two substituents, number the ring from the substituent of lower alphabetical order.
 - If three or more substituents, number the ring to give them the lowest set of numbers, and then list them in alphabetical order.

Nature of Carbon–Carbon Bonds inInfixthe Parent Chain	
-an- all single bonds keep in mind that	
-en- one or more double bonds the infix refers to the nature of the C-C	ie '
-yn- one or more triple bonds <i>bonds in the parent ch</i>	in

IUPAC- A General System

✤ prefix-infix-suffix

- **Prefix** tells the number of carbon atoms in the parent.
- Infix tells the nature of the carbon-carbon bonds.
- **Suffix** tells the class of compound.

uffix	Class of Compound		
-e -ol	hydrocarbon alcohol	-	we will learn suffixes for other classes of compounds
-al	aldehyde		in later chapters
-one -oic acid	ketone carboxylic acid		

<u>Cis-trans Isomerism</u>

- * Cis-trans isomers have
 - The same molecular formula.
 - The same connectivity of their atoms.
 - An arrangement of atoms in space that cannot be interconverted by rotation about sigma bonds.

Physical Properties

- ✤ Boiling point
 - Low-molecular-weight alkanes (1 to 4 carbons) are gases at room temperature; e.g., methane, propane, butane.
 - Higher-molecular-weight alkanes (5 to 17 carbons) are liquids at room temperature (e.g., hexane, decane, gasoline, kerosene).
 - High-molecular-weight alkanes (18 or more carbons) are white, waxy semisolids or solids at room temperature (e.g., paraffin wax).
- ✤ Density
 - Average density is about 0.7 g/mL.
 - Liquid and solid alkanes float on water.

