

Table of Contents

- 1. Structure & Classification
- 2. Nomenclature
- 3. Physical Properties and Structure of Amines
- 4. Basicity of Amines: Amine Salts
- 5. PKa and pKb
- 6. Reactions with acids
- 7. Amines as nucleophiles

Structure & Classification

- Classification
 - -1°, 2°, or, 3° amines: Amines in which 1, 2, or 3 hydrogens of NH₃ are replaced by alkyl or aryl groups.

Ammonia Methylamine Dimethylamine Trimethylamine (a 1° amine) (a 2° amine) (a 3° amine)

Structure & Classification

- Amines are further divided into aliphatic, aromatic, and heterocyclic amines.
 - Aliphatic amine: An amine in which nitrogen is bonded only to alkyl groups.
 - Aromatic amine: An amine in which nitrogen is bonded to one or more aryl groups.

the aryl group is not directly bonded to the nitrogen atom
$$\begin{array}{c|c} CH_3 & CH_2 - N-CH_3 \\ \hline NH_2 & N-Methylaniline \\ (a~1^\circ aromatic amine) & (a~2^\circ aromatic amine) & (a~3^\circ aliphatic amine) \\ \end{array}$$

this is not an aromatic amine because

Nomenclature

 Among the various functional groups discussed in the text, -NH₂ group has one of the lowest priorities.

$$_{\mathrm{H_2N}}$$
 OH $_{\mathrm{NH_2}}$

2-Aminoethanol

2-Aminobenzoic acid

Nomenclature

 Common names for most aliphatic amines are derived by listing the alkyl groups bonded to nitrogen in one word ending with the suffix amine.

Nomenclature

 When four groups are bonded to the nitrogen atom, we name the compound as a salt of the corresponding amine.

$$(CH_3)_4N^+CI^- \\ (CH_3)_4N^+CI^- \\ (CH_2)_{14}CH_2 \\ (CH_2)_{14}CH_3 \\ (CH_2)_{14$$

Physical Properties

- Amines are polar compounds, and both 1° and 2° amines form intermolecular hydrogen bonds.
 - N-H- - N hydrogen bonds are weaker than O-H- - O hydrogen bonds because the difference in electronegativity between N and H (3.0 2.1 = 0.9) is less than that between O and H (3.5 2.1 = 1.4).

	$\mathrm{CH_3NH_2}$	$\mathrm{CH_{3}OH}$
molecular weight (g/mol)	31.1	32.0
boiling point (°C)	-6.3	65.0

Basicity

• All amines are weak bases, and aqueous solutions of amines are basic.

$$CH_{3} - \stackrel{H}{\overset{|}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}{\stackrel{}}}{\stackrel{}}}} + H \stackrel{\Box}{\overset{\Box}{\stackrel{}}{\stackrel{}}{\stackrel{}}} - H \Longrightarrow CH_{3} - \stackrel{H}{\overset{|}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}{\stackrel{}}}} - H \stackrel{\Xi}{\overset{\Box}{\stackrel{}}{\stackrel{}}{\stackrel{}}} - H$$

Methylamine

Methylammonium hydroxide

$$K_{\text{eq}} = \frac{[\text{CH}_3\text{NH}_3^+][\text{OH}^-]}{[\text{CH}_3\text{NH}_2][\text{H}_2\text{O}]}$$

Basicity

 It is also common to discuss the basicity of amines by reference to the ionization constant K_a of its conjugate acid.

$$CH_3NH_3^+ + H_2O \Longrightarrow CH_3NH_2 + H_3O^+$$

$$K_{\rm a} = \frac{{
m [CH_3NH_2][H_3O^+]}}{{
m [CH_3NH_3}^+]} = 2.29 \times 10^{-11} \ {
m p} K_{\rm a} = 10.64$$

- For any acid-conjugate base pair.

$$pK_a + pK_b = 14.00$$

Basicity

 Using values of pK_a, we can predict the position of equilibrium in acid-base reactions.

$$CH_3NH_2 + CH_3COOH \rightleftharpoons CH_3NH_3^+ + CH_3COO^-$$

 $pK_a = 4.76$ $pK_a = 10.64$

Stronger Stronger base acid

Weaker acid Weaker base

 Acetic acid is the stronger acid and, therefore, the position of this equilibrium lies to the right.

$\begin{array}{c} \textbf{Basicity} \\ \textbf{- Aromatic amines are considerably weaker bases} \\ \textbf{than aliphatic amines.} \end{array}$

Basicity

 Electron-withdrawing groups, such as halogen, nitro, and carbonyl, decrease the basicity of aromatic amines by decreasing the availability of the electron pair on nitrogen.

Basicity

• Example: Select the stronger base in each pair of amines.

(a) or
$$H$$

$$(A) (B) (B)$$

$$(A) (B) (CH_2NH_2)$$

$$(C) (D)$$

Guanidine

• Guanidine (pK_b 0.4) is the strongest base among neutral organic compounds.

$$\begin{array}{c} \text{NH} & ^{+}\text{NH}_{2} \\ \parallel \\ \text{H}_{2}\text{N} - \text{C} - \text{NH}_{2} + \text{H}_{2}\text{O} & \Longrightarrow \text{H}_{2}\text{N} - \text{C} - \text{NH}_{2} + \text{OH}^{-} \end{array} \quad pK_{b} = 0.4$$

Guanidine

Guanidinium ion

 Its basicity is due to the resonance delocalization of the positive charge over the three nitrogen atoms.

$$\begin{array}{c} \overset{+}{N} H_2 & \overset{+}{N} H_2 \\ H_2 \overset{-}{N} - \overset{-}{C} - \overset{+}{N} H_2 & \overset{+}{N} H_2 \\ \end{array}$$
 Three equivalent contributing structures

Reaction with Acids

 All amines, whether soluble or insoluble in water, react quantitatively with strong acids to form watersoluble salts.

HOOH NH2 + H—Cl:
$$H_2O$$
 HO NH3+ : Cl: H_3O HO NH

Amines as Nucleophiles

 Reaction of an amine with an alkyl halide can be used to form a new covalent bond.

Step 1: Reaction of a nucleophile with an electrophile to form a new covalent bond.

(a nucleophile) (an electrophile)

Amines as Nucleophiles

 Step 2: Take a proton away. Converts the amine salt to a free amine.