
Chemistry 410A Final Exam Fall 2011
Solutions

1. (a) What is the difference in energy (in J) between a red photon at 650 nm and a blue photon

at 480nm? Solution:

∆E =
hc

480 nm
− hc

650 nm
=

(6.626 · 10−34 J s)(2.998 · 108ms−1)

10−9m/ nm

(

1

480
− 1

650

)

= 1.08 · 10−19 J.

(b) What is the transition energy ∆E in kJ/mol of the n = 5 → 4 emission in Li2+? Solution:

∆E = −32

2

(

1

52
− 1

42

)

Eh = −0.101Eh = −266 kJmol−1.

(c) Write the expression for the complex conjugate of the 3pml=1 orbital wavefunction in B4+.

Solution:

ψ∗

3,1,1 = ψ3,1,−1 = R3,1(r)Y
−1
1 (θ, φ)

=
4
√
2

27
√
3

(

5

a0

)3/2(
5r

a0

)(

1− 5r

6a0

)

e−5r/(3a0)

√

3

8π
sin θ e−iφ

(d) Pretend you want to solve the vector model for ground state protactinium, with electron

configuration [Rn]7s26d15f2. Draw any two valid microstates (the diagrams with the little

arrows) for this configuration, and write the ML and MS values. Solution: Many possible

solutions, but for each of them: (i) we only need the 6d and 5f electrons; (ii) the maximum

MS is 3/2; (iii) the maximum ML is 8.

(e) If we count all of the spatial coordinates that describe one H2O molecule,

i. How many of these are translational coordinates? Solution: 3

ii. How many of these are rotational coordinates? Solution: non-linear, so 3

iii. How many of these are vibrational coordinates? Solution: non-linear, so 3Natom − 6 =

3

iv. How many of these are electronic coordinates? Solution: three coordinates for each of

ten electrons, so 30

(f) Hexamethylene triperoxide diamine (HMTD) was one of the explosive compounds identified

at a property in Escondido in November 2010, which led to the house being intentionally

burned to the ground by authorities. Each atom is equivalent to the other atoms of same

atomic number (so all six carbons are equivalent, both nitrogens, and so on). Assign HMTD

to its point group, and identify the representation of the vibrational motion where the two

nitrogens twist in opposite directions.

CH2

CH2

CH2

N
CH2

CH2

CH2

CH2

CH2

CH2

CH2

CH2

CH2
O

O

O
O

O

O

NN

O

O

O

O

O
O

Solution: D3 a1
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(g) Write the MO configuration and term symbol for the ground state of O2+
2 . Solution: Same

as for N2, except for possible switching of the 3σg and 1πu when the O2 bond gets stronger

(CHECK).

1σ2
g 1σ

2
u 2σ

2
g 2σ

2
u 3σ

2
g 1π

4
u

1Σ+
g

(h) Estimate the v = 1 → 2 transition energy of 2D19F. Solution:

E = ωe

(

v + 1
2

)

− ωexe
(

v + 1
2

)2

∆Ev=1→2 = ωe − ωexe
(

2.52 − 1.52
)

= ωe − 4ωexe

= 2998.19− 4(45.76) = 2815.15cm−1.

(i) What homonuclear diatomic molecule has a bond length of 2.56 Å and an equilibrium rota-

tional constant (for its most abundant isotope) of 0.0396cm−1? Solution: For the homonu-

clear diatomic X2, the reduced mass µ is equal to m2
X/(2mX) = mX/2.

Be ( cm
−1) =

h̄

4πcµR2
e

=
16.858

µ ( amu)Re ( Å)2

µ ( amu) =
16.858

Be ( cm−1)Re ( Å)2
=

16.858

(0.0396)(2.56)2
= 64.96 amu =

1

2
mX

mX = 129.9 amu.

This is the atomic mass for 130Te, so the molecule is Te2.

(j) Using two point charges for a dipole, and four point charges for a quadrupole, draw an

orientation in the xz plane of a dipole and a quadrupole such that the force of the interaction

along z is exactly zero. Solution:

z

x

(k) Calculate the change in energy when two tetrahedral Ar4 clusters combine to form a cubic Ar8
cluster, assuming that each nearest-neighbor interaction is −ǫ. Solution: Each tetrahedral

cluster has 6 interactions (the number of edges of a tetrahedron). The cubic cluster will have

12 (the number of edges of a cube). So – to a first approximation – there is no net change in

the energy when the two Ar4 clusters combine. Each atom interacts with three others before

and after the process. ∆E = 0.

(l) The following equation is proposed as a model pair correlation function:

G(R) ≈ [1− cos(πR/R0)] e
−R/R0 .

In what limit of R and in what way does this function have the wrong behavior? Solution:

The function correctly goes to 0 at R = 0, and peaks at R = R0. However, it converges to 0

as R → ∞ when it should converge to 1.

Part 2: 180 points.

2. An electron has a normalized wavefunction

ψ(x) =

√

30

a5
[

(a/2)2 − x2
]

− a/2 < x ≤ a/2

ψ(x) = 0 x ≤ −a/2, x > a/2
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which is not an eigenfunction of the kinetic energy operator. Find the expectation value of the

kinetic energy in terms of the constant a. Solution: Because the function is not an eigenfunction

of K̂, we need to use the average value theorem. This means solving the integral over ψ∗K̂ψ over

the interval −a/2 to a/2. Outside that interval, the wavefuction is zero and so is the value of the

integral. If we slog forward, we find that we can solve the integral analytically:

〈K〉 =
∫ a/2

−a/2

ψ∗K̂ψ dx

= − h̄2

2me

(

30

a5

)
∫ a/2

−a/2

[

(a/2)2 − x2
]

[

∂2

∂x2
(

(a/2)− x2
)

]

dx

= − h̄2

2me

(

30

a5

)
∫ a/2

−a/2

[

(a/2)2 − x2
]

[−2] dx

=
h̄2

me

(

30

a5

)
∫ a/2

−a/2

[

(a/2)2 − x2
]

dx

=
h̄2

me

(

30

a5

) [

(a/2)2x− x3

3

]∣

∣

∣

∣

a/2

−a/2

=
h̄2

me

(

30

a5

)[

a3

8
− −a3

8
−
(

a3

24
− −a3

24

)]

=
h̄2

me

(

30

a5

)(

a3

6

)

=
5h̄2

mea2
.

We can compare that to π2h̄2/(2mea
2), which is the ground state (n = 1) kinetic energy of an

electron in a one-dimensional box of length a. The system in our problem has a kinetic energy

that differs by a factor of 5/(π2/2) = 1.013. The parabolic wavefunction in this problem is similar

in shape to the half sine wave that is the correct n = 1 particle-in-a-box wavefunction, so it gives

a similar average kinetic energy. The energy in this problem is a little higher, because the particle

in a box gives the lowest possible kinetic energy for a system of length a, as per the variational

principle described in Section ??.

3. Write the explicit integral necessary to find the electron-electron repulsion energy in the triplet

1s2s excited state of atomic helium to first order in perturbation theory. Solution: For helium,

Z = 2.

Ψ = 1s(1)2s(2)− 2s(1)1s(2)

1s(i) =

√

1

4π
2

(

2

a0

)3/2

e−2ri/a0

2s(i) =

√

1

4π

1√
2

(

2

a0

)3/2(

1− ri
a0

)

e−ri/a0

1

4πǫ0

〈

e2

r12

〉

=
e2

4πǫ0

∫

∞

0

∫ π

0

∫ 2π

0

∫

∞

0

∫ π

0

∫ 2π

0

|Ψ(1, 2)|2 1

r12
r21 r

2
2 sin θ1 sin θ2 dr1 dr2 dθ1 dθ2 dφ1 dφ2.

4. The table below lists orbital energies in Eh from a Hartree-Fock calculation on the N2 molecule.

The total Hartree-Fock energy of the molecule is −108.983Eh.

(a) Assign each energy to the correct molecular orbital in the MO configuration.
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−15.682 1σg
−15.678 1σu
−1.470 2σg
−0.777 2σu
−0.632 3σg
−0.612 1πu
−0.612 1πu

(b) Calculate the total electron-electron repulsion energy in Eh. Solution: These are the orbital

energies, and each orbital is occupied by two electrons. The sum of the orbital energies is

−35.463Eh, and we double this because there are two electrons in each orbital, obtaining

−70.926Eh. This sum contains each electron-electron interaction twice, so we subtract the

total HF energy, −108.983Eh, to get the repulsion energy:

−70.926Eh − (−108.983Eh) = 38.057Eh.

(c) To estimate the strength of the electron-nuclear interaction, calculate the effective atomic

number of an electron in the highest energy orbital. Solution: Since the 1πu electrons

correlate to the 2p atomic orbitals, we should set the principal quantum number equal to 2:

Zeff = n
√

−2E/Eh = 2
√
2 · 0.612 = 2.21.

5. Construct a set of sp3 hybrid orbitals from s, px, py, and pz atomic orbitals such that one orbital

has exactly 40% s character and the other three orbitals are all equivalent. Solution: There are

infinite possibilities, but all must have a coefficient of magnitude
√

2/5 (giving 2/5 or 40% to the

probability densitry) for the s contribution to the unique hybrid orbital, and
√

1/5 for each of

the remaining equivalent orbitals. The simplest way – I think – to determine the p contributions

is to align the unique orbital along the z axis (so omit px and pz character), and put one of the

remaining three equivalent orbitals in the xz plane (so the py character is zero). The last three

hybrids equally divide the pz character left over from the unique hybrid. The last two orbitals

will equally divide the py character and the remaining px character.

sp3a =

√

2

5
(s) + (0)(px) + (0)(py) +

√

3

5
(pz)

sp3b =

√

1

5
(s) +

√

2

3
(px) + (0)(py)−

√

2

15
(pz)

sp3c =

√

1

5
(s)−

√

1

6
(px) +

√

1

2
(py)−

√

2

15
(pz)

sp3d =

√

1

5
(s)−

√

1

6
(px)−

√

1

2
(py)−

√

2

15
(pz)

6. The cyclopentadienyl radical has the structure drawn below. All the carbons are equivalent and

all the hydrogens are equivalent.

H

H

HH

H

.

C

C

C

C

C
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(a) Find the point group for this molecule.

(b) Show that the HOMO→LUMO transition (highest occupied to lowest unoccupied MO) in

the π-bonding system of cyclopentadienyl must be allowed by electric dipole selection rules.

Solution: The point group is D5h. There are five atomic p orbitals, which must combine to

form five π MOs: the lowest energy will have no nodes (ignoring the node through the molecular

plane), the second and third MOs form a degenerate pair with one node each, and the fourth and

fifth form another degenerate pair with two nodes each. There also five electrons, which fill two of

the lower energy orbitals but only half fill the third. The HOMO therefore has one node, while the

LUMO has two nodes. for the function that introduces a node – a change in sign – perpendicular

to the existing node, without changing the other symmetry properties of the π orbitals. That Γµ

must have the same symmetry as the function x ro y, and therefore corresponds to an electric

dipole allowed transition.

7. For the 7Σ+
u state of N2 in Fig. 6.7:

(a) What is the spin S of this state? Solution: 2S + 1 = 7 so S = 3.

(b) What is the minimum number of unpaired electrons in this electronic state? Solution:To

get a total spin of 3 from electrons with spins of 1/2 each, there must be at least 6 unpaired

electrons. (There could be more, in principle, because two unpaired electrons in different

orbitals may have cancelling spins.)

(c) What are the term symbols for the N atoms in the large-R limit? Solution: This state

correlates with the ground states of the atoms, because it converges to the same energy at

large R as the ground and lowest excited states. The ground state term of nitrogen is 4S.

(d) What is the MO configuration for this state? Solution: To obtain a spin of 3, we need all

six valence electrons to occupy separate orbitals:

(1σg)
2(1σu)

2(2σg)
2(2σu)

2(1πu)
2(3σg)

1(1πg)
2(3σu)

1.

Each π MO is doubly degenerate, so we can put two electrons in 1πu, with one going in the

πx and one in the πy orbital, for example.

8. The expectation value of x2 of a particle with mass m in a harmonic oscillator potential is given

by
〈

x2
〉

=
ωe

k

(

v + 1
2

)

.

Use this to find an expression for
〈

p2
〉

in terms of m, ωe, and v. Solution:

E = 〈K + U〉 = 〈K〉+ 〈U〉

=

〈

p2

2m

〉

+
〈

1
2kx

2
〉

=
1

2m

〈

p2
〉

+ 1
2k
〈

x2
〉

=
1

2m

〈

p2
〉

+ 1
2k
ωe

k

(

v + 1
2

)

=
1

2m

〈

p2
〉

+ 1
2ωe

(

v + 1
2

)

= ωe

(

v + 1
2

)

1

2m

〈

p2
〉

= 1
2ωe

(

v + 1
2

)

〈

p2
〉

=
2m

2
ωe

(

v + 1
2

)

= mωe

(

v + 1
2

)

.
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9. Based on the parameters below, estimate in kJ/mol the total intermolecular potential energy

for attraction between HI and CO at a separation of 4.0 Å and at 298K:

∆E (eV) µ (D) α (Å3)

HI 7.72 0.45 5.44

CO 8.07 0.11 1.95

Solution: Let’s approximate the ∆E for both molecules as 7.9 eV. The individual contributions

are

〈u2−2〉N,θ,φ = − 2µ2
Aµ

2
B

(4πǫ0)2 3kBTR6

= − 2(0.45D)2(0.11D)2(3.3356 · 10−30Cm/D)4

(1.113 · 10−10C2 J−1 m−1)2(1.381 · 10−23 JK−1)(298K)(4.0 · 10−10m)6

= −2.91 · 10−24 J = −0.0018 kJmol−1

u2−2∗(R) = − 4µ2
Aα

(4πǫ0)R6

= −4(0.45D)2(3.3356 · 10−30Cm/D)2(1.95 · 10−30m3)

(1.113 · 10−10C2 J−1 m−1)(4.0 · 10−10m)6

= −3.85 · 10−23 J = −0.023 kJmol−1

u2−2∗(R) = − 4µ2
Aα

(4πǫ0)R6

= −4(0.11D)2(3.3356 · 10−30Cm/D)2(5.44 · 10−30m3)

(1.113 · 10−10C2 J−1 m−1)(4.0 · 10−10m)6

= −6.43 · 10−24 J = −0.0039 kJmol−1

udisp ≈ −α
2∆E

8R6

= − (5.44 · 10−30m3)(1.95 · 10−30m3)(7.9 eV)(1.602 · 10−19 J/ eV)

8(4.0 · 10−10 m)6

= −4.10 · 10−22 J = −0.25 kJmol−1.

Adding these together gives a total of −0.28 kJmol−1, dominated by the dispersion term.

10. Benzene crystallizes at 1 atm. and 278.5K to an orthorhombic lattice with lattice constants

a = 7.49 Å, b = 9.71 Å, and c = 7.07 Å. The density of the unit cell is 0.606 amu/Å3. If we put

one molecule at each lattice point, where in the unit cell will we find the molecules? Solution:

The mass of one benzene molecule is about 78 amu, and the volume of the unit cell is abc = 514 Å
3
.

The number of molecules per unit cell is therefore

(

1 molecule

78 amu

)(

0.606 amu

1 Å
3

)

(

514 Å
3

unit cell

)

= 4
molecules

unit cell

We can put one benzene at each corner of the unit cell, but this contributes only one molecule

to the unit cell overall. We have to account for three more. Because the unit cell has six faces,

and any molecule located at one of the faces lies half in our unit cell, we can obtain three more

molecules by placing them at the faces. This is not a face-centered lattice (there is no face-centered

orthorhombic Bravais lattice) because the benzenes in the middle of each face are not oriented

the same way as the benzenes at the corners. For the center of each face to be a lattice point, the

molecules at that site would have to be indistinguishable from those at the corners. Instead, this
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is a primitive lattice with a basis of four molecules. The original structure was determined in Ref.

[?].
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