
Chemistry 410B Final Exam Part 2 Fall 2016
Solutions

1. 60 pts

(a) A Carnot cycle engine has the PV cycle drawn below. Explain how we could adjust one

parameter to make the engine more efficient, and show on the graph how the cycle would

be different. Solution: The efficiency is equal to (Thot − Tcold)/Thot, so the greater the

difference in temperature, the greater the efficiency. Lowering Tcold has a bigger effect than

raising Thot by the same amount.

(b) In a Monte Carlo simulation at 300K, determine the range of values of the random number

y (where 0 < y < 1) such that we will keep a new trial state that has potential energy

200 cm−1 greater than the current state. Solution:

y < e−∆U/(kBT ) = e−200/(0.6950·300) = 0.383 y < 0.383.

(c) Find the vapor pressure of Br2 at 298K given that ∆vapH
−◦ = 29.96 kJmol−1 and Tb =

331.9K. Solution:

lnP (bar) =
∆vapH

R

[

1

Tb
−

1

T

]

=
(29.96 kJmol−1)(103 J/ kJ)

8.3145 JK−1mol−1

[

1

331.9K
−

1

298K

]

= −1.235

P = e−1/235 = 0.291bar

(d) The vapor pressure of ClO above a 0.100M aqueous solution of ClO is 0.14bar at 298K.

Find the Henry’s law coefficient kX at this temperature. Solution:

XB =
[B]

[H2O][B]
=

0.100mol

(0.100 + 55.56)mol
= 1.80 · 10−3

kX =
PB

XB
=

0.14 bar

1.80 · 10−3
= 78bar.

(e) A calorimeter with a bath heat capacity of 8370 JK−1 measures a temperature increase of

0.100K in the bath upon the folding of a 1.63 · 10−3mol sample of cellular lysozyme. What

is ∆rxnH
−◦ for the folding of this protein? Solution:

n∆rxnH
−◦ = −qbath = −C∆T

∆rxnH
−◦ = −

C∆T

n
= −

(8370 JK−1)(0.100K)

1.63 · 10−3mol
= −5.13 · 105 Jmol−1 = −513 kJmol−1.

(f) Write the rate law (not the integrated rate law) for the H2Cl
+ intermediate in the reaction

mechanism

Cl + H+
3

k3

−→ HCl+ +H2

HCl+ +H2
k4

−→ H2Cl
+ +H

H2Cl
+ + e−

k5

−→ HCl + H.

Solution:
d[H2Cl

+]

dt
= k4[HCl

+][H2]− k5[H2Cl
+][e−].

2. 3.60 g of liquid water are placed inside a chamber with a piston at 298K. The initial volume of

the liquid is negligible. The water completely evaporates, and the piston is pushed out to allow

the vapor to expand reversibly and isothermally against a pressure of 0.0100bar. Calculate w and

∆S for the process in SI units. Solution:
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(a) The work is done to expand the gas against the 0.100bar external pressure. The phase

transition—the vaporization itself—requires only heat, not work.

n =
m

M
=

3.60 g

18.0 gmol−1 = 0.200mol

V2 =
nRT

P
=

(0.200mol)(0.083145 bar LK−1mol−1)(298K)

0.100 bar
= 49.6 L

w = −Pmin∆V ≈ −PminV2 = −(0.100 bar)(49.6 L)(102 J bar−1 L−1) = 496 J.

(b) The entropy change involves a phase transition at non-standard temperature and pressure,

and so we consider that process as a series of several steps: (1) raise the pressure of the

liquid to 1.00 bar to reach the standard state; (2) heat the liquid to the normal boiling point

at 373K; (3) vaporize the water under standard conditions; (4) cool the vapor back to 298K̇;

(5) reduce the pressure back to 0.100bar.

∆S = ∆1S +∆2S +∆3S +∆4S +∆5S

∆1S ≈ 0 for an incompressible liquid

∆2S = nCPm(l) ln
T2

T1
= (0.200mol)(75.291 JK−1mol−1) ln

373

298
= 3.380 JK−1

∆3S = n∆vapS
−◦ = n

∆vapH
−◦

T
=

40.65 · 103 Jmol−1

373K
= 109.0 JK−1

∆4S = nCPm(g) ln
T2

T1
= (0.200mol)(33.577 JK−1mol−1) ln

298

373
= −1.507 JK−1

∆5S = nR ln
V2

V1
= nR ln

P1

P2
= (0.200mol)(8.3145 JK−1mol−1) ln

1.00

0.100
= 3.829 JK−1

∆S = (0 + 3.380 + 109.0− 1.507 + 3.829) JK−1 = 115 JK−1.

3. Recall that the pKa of an acid HA is − log10 Ka where Ka is the equilibrium constant for the

dissociation of HA into H+ and A−. The pKa of o-aminobenzoic acid decreases linearly from 6.35

at 283K to 5.50 at 323K. What are ∆rxnH and ∆rxnS for the dissociation?

pKa = − log10 Ka = − log10 e
−∆G−◦ /(RT ) =

∆G−◦

RT
log10(e)

=

(

∆H−◦

RT
−

∆S−◦

R

)

log10(e)

Treating ∆H−◦ and ∆S−◦ is temperature-independent:

∆S−◦ =
∆H−◦ (T1)

T1
−

RpKa(T1)

log10(e)
=

∆H−◦ (T2)

T2
−

RpKa(T2)

log10(e)

∆H−◦ =

R
log

10
(e) (pKa(T1)− pKa(T2))

1
T1

− 1
T2

=
8.3145 JK−1 mol−1

0.4343 (6.35− 5.50)
1

283K − 1
323K

= 37.2 kJmol−1.

∆S−◦ =
∆H−◦ (T1)

T1
−

RpKa(T1)

log10(e)
=

37.2 · 103 Jmol−1

283K
−

(8.3145 JK−1mol−1)(6.35)

0.4343
= 9.88 JK−1mol−1.

4. The phase diagram below describes mixtures of copper and zinc, which form brass. (Although

the horizontal axis is percent weight, for copper and zinc this is roughly equal to mole fraction of

Zn.)
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(a) The common form of brass is a “duplex” alloy that combines the α and β forms of the solid.

What is the melting point for duplex brass? Solution: 905◦C.

(b) What is the approximate molecular formula of the low-temperature β-alloy? Solution:

CuZn.

(c) If have a sample of 90% Zn at equilibrium at 400◦C, and we increase the temperature to

500◦C, what change would we observe in the mixture? Solution: The η form of the solid

would melt, while the ǫ form would remain solid.

(d) As we heat the β form of the solid from 500◦C to 800◦C, it becomes stable over a wider

range of composition (% Zn). The opposite is true for the γ phase. How does this suggest

β brass differs from γ brass? Solution: As T approaches the melting point, the β form is

more stable than competing crystal structures of similar composition, whereas the γ form

becomes less stable. That suggests that the γ form is more dense than the β, so that the

vibrations of the atoms at higher temperatures are more constrained in the γ than the β.

5. In the reaction CCl4 + Br −→ CBrCl3 + Cl, the Br atom can attack the CCl4 at any of four

equivalent sites. If we calculate ∆1H
‡, ∆1S

‡, and k1 for a reaction at one of those sites, what

values should we find for ∆4H
‡, ∆4S

‡, and k4–the parameters when we consider all four reaction

sites? In other words, find ∆4H
‡, ∆4S

‡, and k4 as functions of ∆1H
‡, ∆1S

‡, and k1.

(a) ∆4H
‡ = ∆1H

‡

(b)

∆1S
‡ = kB

(

lnΩ‡ − lnΩ1

)

= kB ln
Ω‡

Ω1

∆4S
‡ = kB

(

ln(4Ω‡)− lnΩ1

)

= kB ln
4Ω‡

Ω1
= kB ln 4 + ∆1S

‡

(c) k4 = 4k1

6. For the reaction

A + B
k1

−↽⇀−
k−1

C
k2

−→ D

Eq. 14.23 gives this expression for the concentration of A in the the steady-state approximation:

[A]′ = [A]0

(

1−
[A]0
[B]0

){

exp

[

−([B]0 − [A]0)

(

1−
k−1

k−1 + k2

)

k1t

]

−
[A]0
[B]0

}−1

.

(a) Simplify this equation for the case that [A]0 = [B]0. Solution: Let [B]0− [A]0 = x approach

zero:

[A]′ = [A]0

(

1−
[A]0
[B]0

){

exp

[

−([B]0 − [A]0)

(

1−
k−1

k−1 + k2

)

k1t

]

−
[A]0
[B]0

}−1

=
[A]0
[B]0

([B]0 − [A]0)

{

exp

[

−([B]0 − [A]0)

(

1−
k−1

k−1 + k2

)

k1t

]

−
[A]0
[B]0

}−1

=
[A]0
[B]0

x

{

exp

[

−x

(

1−
k−1

k−1 + k2

)

k1t

]

−
[A]0
[B]0

}−1
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Let e−ax = 1− ax as x approaches 0:

lim
x→0

[A]′ =
[A]0
[B]0

x

{[

1− x

(

1−
k−1

k−1 + k2

)

k1t

]

−
[A]0
[B]0

}−1

=
[A]0
[B]0

x

{

1− x

(

1−
k−1

k−1 + k2
k1t

)

−
[A]0
[B]0

}−1

=
[A]0
[B]0

x

{

1−
[A]0
[B]0

− x

(

1−
k−1

k−1 + k2
k1t

)}−1

=
[A]0
[B]0

x

{

1

[B]0
x− x

(

1−
k−1

k−1 + k2
k1t

)}−1

=
[A]0
[B]0

{

1

[B]0
−

(

1−
k−1

k−1 + k2
k1t

)}−1

= [A]0

{

1− [B]0

(

1−
k−1

k−1 + k2
k1t

)}−1

= [A]0

{

1− [B]0
k−1 + k2 − k−1

k−1 + k2
k1t

}−1

= [A]0

{

1−
k2[B]0

k−1 + k2
k1t

}−1

= [A]0

{

k−1 + k2 − k2[B]0k1t

k−1 + k2

}−1

=
[A]0 (k−1 + k2)

k−1 + k2 − k2[B]0k1t

=
[A]0 (k−1 + k2)

k−1 + k2 − k2[A]0k1t
.

(b) Show that your solution still gives the correct result in the limit that t = 0.

lim
t→0

[A]′ =
[A]0 (k−1 + k2)

k−1 + k2
[A]0.

(c) Show that your solution still gives the correct result in the limit that k2 ≫ k−1.

lim
k2≫k−1

[A]′ =
[A]0 (k2)

k2 − k2[A]0k1t
=

[A]0
1− [A]0k1t

This is the correct equation for the concentration of A in the reaction 2A
k1

−→ products.
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