Exam 1

Fall 2008

Solutions

1. (a) How much time does it take a photon to travel 20.0 m through a vacuum? Solution:

$$
t=\frac{\text { distance }}{\text { speed }}=\frac{20.0 \mathrm{~m}}{2.998 \cdot 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}=6.67 \cdot 10^{-8} \mathrm{~s} .
$$

(b) Which of the following changes decrease λ_{dB} of a hydrogen atom traveling in a 1-D box? Solution: Using $\lambda_{\mathrm{dB}}=h / p$, we can ask, what is the effect of each change on the momentum? If p increases, then λ_{dB} decreases:
i. Replacing the hydrogen atom with a helium atom, keeping E the same. yes, higher mass, higher p.
ii. Doubling the speed of the atom. yes, higher speed, higher p.
iii. Decreasing the particle-in-a-box quantum number n by 1. no, lower energy, lower p.
iv. Reducing the length of the container by half, keeping n the same. yes, to keep n constant in smaller box need to raise E, so higher p.
(c) Calculate the energy in J of the $n=2$ state of a proton in a one-dimensional box of length $4.0 \AA$. Solution:

$$
E_{2}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}=\frac{2^{2} \pi^{2}\left(1.055 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{2\left(1.673 \cdot 10^{-27} \mathrm{~kg}\right)(4.0 \AA)^{2}}=8.2 \cdot 10^{-22} \mathrm{~J} .
$$

(d) If $d / d x$ operates on $f(x)=2 e^{-3 x}$, what is the eigenvalue? Solution:

$$
\frac{d}{d x} f(x)=(-3) f(x) \quad \text { eigenvalue }=-3
$$

2. If the uncertainty in position of an electron is $\delta x=1.0 \AA$ and its average speed is 3.0• $10^{6} \mathrm{~m} \mathrm{~s}^{-1}$, find the minimum uncertainty in that electron's de Broglie wavelength. The relationship between the uncertainties is given by $\delta p / \delta \lambda_{\mathrm{dB}}=\left|d p / d \lambda_{\mathrm{dB}}\right|$. Solution: For the minimum uncertainty, use the "=" sign:

$$
\begin{aligned}
\delta p & =\frac{\hbar}{2 \delta x} \\
\lambda_{\mathrm{dB}} & =\frac{h}{p}=\frac{6.626 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}}{\left(9.109 \cdot 10^{-31} \mathrm{~kg}\right)\left(3.0 \cdot 10^{6} \mathrm{~m} \mathrm{~s}^{-1}\right)}=2.4 \cdot 10^{-10} \mathrm{~m} \\
\frac{d \lambda_{\mathrm{dB}}}{d p} & =-\frac{h}{p^{2}} \\
\frac{\delta \lambda_{\mathrm{dB}}}{\delta p} & =\frac{h}{p^{2}} \\
\delta \lambda_{\mathrm{dB}} & =\frac{h}{p^{2}} \delta p=\frac{h}{p^{2}} \frac{\hbar}{2 \delta x} \\
& =\frac{\lambda_{\mathrm{dB}}^{2}}{4 \pi \delta x}=\frac{\left(2.4 \cdot 10^{-10} \mathrm{~m}\right)^{2}}{4 \pi\left(1.0 \cdot 10^{-10} \mathrm{~m}\right)}=4.6 \cdot 10^{-11} \mathrm{~m} .
\end{aligned}
$$

3. The photon that excites the $n=1 \rightarrow 10$ in He^{+}has the same energy necessary to excite the $n=5 \rightarrow 6$ transition in what other one-electron ion? Solution: Call the unknown atomic number Z and set the two transition energies equal:

$$
\begin{aligned}
\Delta E_{\mathrm{He}^{+}} & =-\frac{2^{2}}{2}\left(\frac{1}{10^{2}}-\frac{1}{1^{2}}\right) E_{\mathrm{h}}=1.98 E_{\mathrm{h}} \\
& =-\frac{Z^{2}}{2}\left(\frac{1}{6^{2}}-\frac{1}{5^{2}}\right) E_{\mathrm{h}}=0.006111 Z^{2} E_{\mathrm{h}} \\
Z^{2} & =\frac{1.98}{0.006111}=324 \\
Z & =18
\end{aligned}
$$

The one-electron atom is Ar^{17+}.
4. Find an equation for the root mean square speed $\left\langle v^{2}\right\rangle^{1 / 2}$ of a particle with mass m in a one-dimensional box of length a and quantum state n. Solution: The energy of the particle in a one-dimensional box is all kinetic energy, which we can set equal to $m v^{2} / 2$. From this we can solve for v^{2} and take the square root to get $\left\langle v^{2}\right\rangle^{1 / 2}$:

$$
\begin{aligned}
E & =\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}=\frac{m v^{2}}{2} \\
v^{2} & =\frac{2 E}{m}=\frac{n^{2} \pi^{2} \hbar^{2}}{m^{2} a^{2}} \\
\left\langle v^{2}\right\rangle^{1 / 2} & =\frac{n \pi \hbar}{m a} .
\end{aligned}
$$

