NAME:

Instructions:

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
 - (a) show all your work, using only the exam papers, including the back of this sheet if necessary;
 - (b) specify the correct units, if any, for your final answers;
 - (c) use an appropriate number of significant digits for final numerical answers;
 - (d) stop writing and close your exam immediately when time is called.

Other notes:

- The first page portion of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

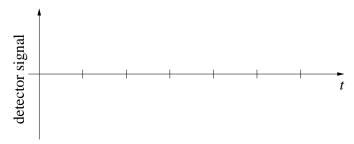
4	40	• ,
1.	40	points.

(a)	The b	oundary	between	the micr	owave an	d radio	regions	of the	spectrum	is at roughly	$y \lambda =$
	$1.0\mathrm{m}.$	What is	the frequ	uency of	the radia	tion at	this wav	elengtl	n?		

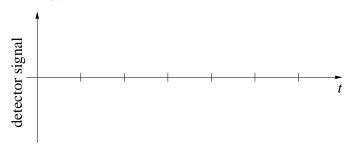
(b) What is the energy in E_h (hartrees) of the n=4 state of He⁺?

- (c) The Bohr model of the atom successfully predicts which of the following (circle the number of each correct response):
 - i. The spectrum of the neutral helium atom.
 - ii. The wavefunction of the electron in the neutral hydrogen atom.
 - iii. The 2nd ionization energy of helium atom (the ionization energy of He⁺).
- (d) A particle moves between two walls. The correspondence principle predicts that the system will behave more **classically** when we increase which of the following parameters (circle the number of each correct response):
 - i. The mass of the particle.
 - ii. The spacing between the walls.
 - iii. The de Broglie wavelength of the particle.
 - iv. The speed of the particle.

- 2. A stationary detector directly measures the probability density of free particles called *neutrinos* as a function of time. We position the detector to monitor a beam of neutrinos at some constant speed v. Assume that the wave-like oscillations of the neutrinos all have the same phase, and that the neutrino mass is $m = 1.0 \cdot 10^{-37}$ kg.
 - (a) Sketch what the detector sees when $v_1 = 0.010c$, where c is the speed of light. Give numbers and units for the t axis, but not the vertical axis.



(b) Do the same for $v_2 = 0.020c$, using the same scale for the t axis.



3. What is the eigenvalue when the \hat{p}^2 operator operates on the n=2 state of a proton in a box of length 2.0 Å?

4. If the proton and electron in the Bohr model of hydrogen were replaced by uncharged particles with the same masses, there would still be a very small gravitational attraction between the particles. What is the ground state energy of this atom in J? The equation for the attractive force between two masses is

$$F_{\text{grav}} = \frac{m_1 m_2 G}{r^2},$$

where the gravitational constant G is equal to $6.67 \cdot 10^{-11} \, \mathrm{m}^3 \, \mathrm{kg}^{-1} \, \mathrm{s}^{-2}.$

Balmer:
$$E_{\rm photon} = (2.180 \cdot 10^{-18} \,\mathrm{J}) \, \left(\frac{1}{\mathrm{n''^2}} - \frac{1}{\mathrm{n'^2}}\right)$$

Bohr atom: $r_n = \frac{4\pi\epsilon_0 n^2\hbar^2}{Zm_e e^2} = \frac{n^2}{Z}a_0$ $v_n = \frac{Ze^2}{4\pi\epsilon_0 n\hbar}$
 $E_n = -\frac{Z^2m_e e^4}{(4\pi\epsilon_0)^2 2n^2\hbar^2} = -\frac{Z^2}{2n^2} E_{\mathrm{h}}$ $L_n = m_e r_n v_n = n\hbar$

momentum operator: $\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx}$

kinetic energy operator: $\hat{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$

particle in a 1-D box: $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$ $E_n = \frac{n^2\pi^2\hbar^2}{2ma^2}$

Derivatives

Integrals

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$

$$\int \frac{1}{x}dx = \ln x + C$$

$$\int \ln x dx = x \ln x - x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sin^2(ax) dx = \frac{x}{2} - \frac{\sin(2ax)}{4a} + C$$

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int \int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

$$\int \int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}}$$

$$\int \int \int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}}$$

$$\int \int \int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}}$$

$$\int \int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}}$$

$$\int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}}$$

$$\int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}} (\frac{\pi}{a^3})^{1/2}$$

$$\int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}} (\frac{\pi}{a^{n+1}})^{1/2}$$

$$\int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}} (\frac{\pi}{a^3})^{1/2}$$

$$\int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}} (\frac{\pi}{a^3})^{1/2}$$

$$\int \int x^{2n} e^{-ax^2} dx = \frac{1}{2a^{n+1}} (\frac{\pi}{a^3})^{1/2}$$

Fundamental Constants

Avogadro's number	\mathcal{N}_A	$6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e\epsilon^2}$	$5.29177249 \cdot 10^{-11} \text{ m}$
Boltzmann constant	k_B	$1.380658 \cdot 10^{-23} \text{ J K}^{-1}$
electron rest mass	m_e	$9.1093897 \cdot 10^{-31} \text{ kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \text{ C}$
permittivity factor	$4\pi\epsilon_0$	$1.113 \cdot 10^{-10} \mathrm{C^2} \mathrm{J^{-1}} \mathrm{m^{-1}}$
gas constant	R	$8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$
	R	$0.08314510 \text{ L bar K}^{-1} \text{ mol}^{-1}$
	R	$0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$
hartree	$E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2\hbar^2}$	$4.35980 \cdot 10^{-18} \text{ J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \text{ J s}$
	\hbar	$1.05457266 \cdot 10^{-34} \text{ J s}$
proton rest mass	m_p	$1.6726231 \cdot 10^{-27} \text{ kg}$
neutron rest mass	m_n	$1.6749286 \cdot 10^{-27} \text{ kg}$
speed of light	c	$2.99792458 \cdot 10^8 \text{ m s}^{-1}$

Unit Conversions

	K	${\rm cm}^{-1}$	${\rm kJ~mol^{-1}}$	$kcal mol^{-1}$	erg	kJ
kHz =	$4.799 \cdot 10^{-8}$	$3.336 \cdot 10^{-8}$	$3.990 \cdot 10^{-10}$	$9.537 \cdot 10^{-11}$	$6.626 \cdot 10^{-24}$	$6.626 \cdot 10^{-34}$
MHz =	$4.799 \cdot 10^{-5}$	$3.336 \cdot 10^{-5}$	$3.990 \cdot 10^{-7}$	$9.537\cdot10^{-8}$	$6.626 \cdot 10^{-21}$	$6.626 \cdot 10^{-31}$
GHz =	$4.799 \cdot 10^{-2}$	$3.336 \cdot 10^{-2}$	$3.990\cdot10^{-4}$	$9.537\cdot10^{-5}$	$6.626 \cdot 10^{-18}$	$6.626 \cdot 10^{-28}$
K =	1	0.6950	$8.314 \cdot 10^{-3}$	$1.987 \cdot 10^{-3}$	$1.381 \cdot 10^{-16}$	$1.381 \cdot 10^{-26}$
$cm^{-1} =$	1.4388	1	$1.196 \cdot 10^{-2}$	$2.859\cdot10^{-3}$	$1.986 \cdot 10^{-16}$	$1.986 \cdot 10^{-26}$
$kJ \text{ mol}^{-1} =$	$1.203 \cdot 10^{2}$	83.59	1	0.2390	$1.661 \cdot 10^{-14}$	$1.661 \cdot 10^{-24}$
$kcal mol^{-1} =$	$5.032 \cdot 10^2$	$3.498\cdot 10^2$	4.184	1	$6.948 \cdot 10^{-14}$	$6.948 \cdot 10^{-24}$
eV =	$1.160 \cdot 10^4$	$8.066\cdot10^3$	96.49	23.06	$1.602 \cdot 10^{-12}$	$1.602 \cdot 10^{-22}$
hartree =	$3.158 \cdot 10^{5}$	$2.195\cdot 10^5$	$2.625\cdot 10^3$	$6.275\cdot 10^2$	$4.360 \cdot 10^{-11}$	$4.360 \cdot 10^{-21}$
erg =	$7.243 \cdot 10^{15}$	$5.034\cdot10^{15}$	$6.022\cdot10^{13}$	$1.439\cdot10^{13}$	1	10^{-10}
J =	$7.243 \cdot 10^{22}$	$5.034 \cdot 10^{22}$	$6.022 \cdot 10^{20}$	$1.439 \cdot 10^{20}$	10^{7}	10^{-3}
$dm^3 bar =$	$7.243 \cdot 10^{24}$	$5.034 \cdot 10^{24}$	$6.022 \cdot 10^{22}$	$1.439 \cdot 10^{22}$	$1.000 \cdot 10^{9}$	0.1000
kJ =	$7.243 \cdot 10^{25}$	$5.034 \cdot 10^{25}$	$6.022\cdot10^{23}$	$1.439 \cdot 10^{23}$	10^{10}	1