NAME:

Instructions:

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
 - (a) show all your work, using only the exam papers, including the back of this sheet if necessary;
 - (b) specify the correct units, if any, for your final answers;
 - (c) use an appropriate number of significant digits for final numerical answers;
 - (d) stop writing and close your exam immediately when time is called.

Other notes:

- The first page portion of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

1. **40** points.

(a) Calculate the probability of finding $^1\mathrm{H}^{127}\mathrm{I}$ in the J=5 rotational state at 298 K, given that $B_e=3.2535\,\mathrm{cm}^{-1}$ and $q_{\mathrm{rot}}(298\,\mathrm{K})=63.7$.

(b) Write the integral necessary to calculate the number of atoms in a $1.00\,\mathrm{mol}$ sample of helium at $273\,\mathrm{K}$ that have speeds greater than $200\,\mathrm{m\,s^{-1}}$. Include any necessary numerical values and unit conversions.

(c) Calculate the average speed of gas-phase UF $_{6}$ at 298 K.

(d) Simplify $\mathcal{I}(T) = 4\pi \int_0^\infty \left(e^{-u(R)/(k_BT)} - 1 \right) R^2 dR$

in the limit of the ideal gas.

2.	The entropy of helium	gas at 298 K and a	pressure of 1.00 bar is tabulated as $126.04 \mathrm{J K^{-1} mol^{-1}}$	

- (a) If entropy behaves rigorously like an extensive parameter, find the entropy of a *single* He atom under these conditions.
- (b) Use the ideal gas law to determine the volume that this single atom would occupy under these conditions.
- (c) Find the number of ensemble states for the atom under these conditions.

3. Some reactions of organic molecules with iodine occur best at temperatures of up to 500 C (773 K), which just happens to be equal to $2.50\,\omega_e/k_B$. At that temperature, we may approximate the vibrational energy as a continuous function of the quantum number v. Use that approximation to estimate what fraction I_2 molecules will be in vibrational states with $v \leq 4$.

4. The disinfectant iodoform (CHI₃) has a vapor pressure of $4.5 \cdot 10^{-5}$ bar at 298 K. Assume that all the vibrational modes *except* those involving the H atom contribute to it energy according to the equipartition principle. In a sample of air at 1.00 bar and 298 K containing iodoform at its vapor pressure, estimate the fraction of the total energy that is present in the iodoform. Assume that air can be treated as a gas of diatomic molecules with no vibrational excitation at this temperature.

temperature:

canonical dist.

partition func.s

velocity

Maxwell-Boltzmann

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}} = \sqrt{\frac{8RT}{\pi \mathcal{M}}}$$

$$E_{\text{vib}} = \omega_e v$$

$$E_{\text{rot}} = B_v J(J+1)$$

$$g_{\text{rot}} = 2J + 1$$

equipartition

$$S_{\text{Boltzmann}} = k_B \ln \Omega \qquad S_{\text{Gibbs}} = -Nk_B \sum_{i} \mathcal{P}(i) \ln \mathcal{P}(i)$$

$$\varepsilon = \frac{h^2}{8mV^{2/3}} n^2 \qquad g_1(\varepsilon) = \frac{32\pi V (2m^3\varepsilon)^{1/2} d\varepsilon}{h^3}$$

$$T = \left(\frac{\partial E}{\partial S}\right)_{V,N}$$

$$\mathcal{P}(E) = g(E)\mathcal{P}(i) = \frac{g(E)e^{-E/(k_BT)}}{Q(T)}$$

$$Q(T) = \sum_{E} g(E)e^{-E/(k_BT)}$$

$$q_{\text{trans}}(T, V) = \left(\frac{8\pi mk_BT}{h^2}\right)^{3/2} V$$

$$Q_K(T, V) = \frac{1}{N!} \left(\frac{8\pi mk_BT}{h^2}\right)^{3N/2} V^N$$

$$Q_U(T, V) = \left(\frac{1}{V}\right)^N \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} e^{-U(X_1, \dots, Z_N)/(k_BT)} dX_1 \dots dZ_N$$

$$\equiv \left(\frac{1}{V}\right)^N Q'_U(T, V)$$

$$Q_{\text{trans}}(T, V) = Q_K(T)Q_U(T, V) = \frac{1}{N!} \left(\frac{8\pi mk_BT}{h^2}\right)^{3N/2} Q'_U(T, V)$$

$$\mathcal{P}(\vec{v}) = \left(\frac{m}{2\pi k_BT}\right)^{3/2} e^{-mv^2/(2k_BT)}$$

$$\mathcal{P}(v) = 4\pi \left(\frac{m}{2\pi k_BT}\right)^{3/2} v^2 e^{-mv^2/(2k_BT)}$$

$$E = \frac{1}{2}N_{\rm ep}Nk_BT = \frac{1}{2}N_{\rm ep}nRT$$

Fundamental Constants

Avogadro's number	\mathcal{N}_A	$6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2}$	$5.29177249 \cdot 10^{-11} \text{ m}$
Boltzmann constant	k_B	$1.380658 \cdot 10^{-23} \text{ J K}^{-1}$
electron rest mass	m_e	$9.1093897 \cdot 10^{-31} \text{ kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \text{ C}$
permittivity factor	$4\pi\epsilon_0$	$1.113 \cdot 10^{-10} \mathrm{C^2 J^{-1} m^{-1}}$
gas constant	R	$8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$
	R	$0.08314510 \text{ L bar K}^{-1} \text{ mol}^{-1}$
	R	$0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$
hartree	$E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2 \hbar^2}$	$4.35980 \cdot 10^{-18} \text{ J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \text{ J s}$
	\hbar	$1.05457266 \cdot 10^{-34} \text{ J s}$
proton rest mass	m_p	$1.6726231 \cdot 10^{-27} \text{ kg}$
neutron rest mass	m_n	$1.6749286 \cdot 10^{-27} \text{ kg}$
speed of light	c	$2.99792458 \cdot 10^8 \text{ m s}^{-1}$

Unit Conversions

	K	${ m cm}^{-1}$	${\rm kJ~mol^{-1}}$	$kcal mol^{-1}$	J	kJ
kHz =	$4.799 \cdot 10^{-8}$	$3.336 \cdot 10^{-8}$	$3.990 \cdot 10^{-10}$	$9.537 \cdot 10^{-11}$	$6.626 \cdot 10^{-31}$	$6.626 \cdot 10^{-34}$
MHz =	$4.799 \cdot 10^{-5}$	$3.336 \cdot 10^{-5}$	$3.990 \cdot 10^{-7}$	$9.537 \cdot 10^{-8}$	$6.626 \cdot 10^{-28}$	$6.626 \cdot 10^{-31}$
GHz =	$4.799 \cdot 10^{-2}$	$3.336 \cdot 10^{-2}$	$3.990 \cdot 10^{-4}$	$9.537 \cdot 10^{-5}$	$6.626 \cdot 10^{-25}$	$6.626 \cdot 10^{-28}$
K =	1	0.6950	$8.314 \cdot 10^{-3}$	$1.987 \cdot 10^{-3}$	$1.381 \cdot 10^{-23}$	$1.381 \cdot 10^{-26}$
$cm^{-1} =$	1.4388	1	$1.196 \cdot 10^{-2}$	$2.859 \cdot 10^{-3}$	$1.986 \cdot 10^{-23}$	$1.986 \cdot 10^{-26}$
$kJ \text{ mol}^{-1} =$	$1.203 \cdot 10^2$	83.59	1	0.2390	$1.661 \cdot 10^{-21}$	$1.661 \cdot 10^{-24}$
$kcal mol^{-1} =$	$5.032 \cdot 10^2$	$3.498 \cdot 10^{2}$	4.184	1	$6.948 \cdot 10^{-21}$	$6.948 \cdot 10^{-24}$
eV =	$1.160 \cdot 10^4$	$8.066 \cdot 10^{3}$	96.49	23.06	$1.602 \cdot 10^{-19}$	$1.602 \cdot 10^{-22}$
hartree =	$3.158 \cdot 10^5$	$2.195\cdot 10^5$	$2.625\cdot 10^3$	$6.275\cdot 10^2$	$4.360 \cdot 10^{-18}$	$4.360 \cdot 10^{-21}$
erg =	$7.243 \cdot 10^{15}$	$5.034 \cdot 10^{15}$	$6.022 \cdot 10^{13}$	$1.439 \cdot 10^{13}$	10^{-7}	10^{-10}
J =	$7.243 \cdot 10^{22}$	$5.034 \cdot 10^{22}$	$6.022 \cdot 10^{20}$	$1.439 \cdot 10^{20}$	1	10^{-3}
bar L =	$7.243 \cdot 10^{24}$	$5.034 \cdot 10^{24}$	$6.022 \cdot 10^{22}$	$1.439 \cdot 10^{22}$	100.0	0.1000
$_{\rm L}$ kJ =	$7.243 \cdot 10^{25}$	$5.034 \cdot 10^{25}$	$6.022 \cdot 10^{23}$	$1.439 \cdot 10^{23}$	10^{3}	1

```
10^{-10} \text{ m}
                                                1 \text{ Å} =
                         distance
                                                              1.66054 \cdot 10^{-27} \text{ kg}
                                          1 \text{ amu } =
                               mass
                                                                       1 \text{ kg m}^2 \text{ s}^{-2} = 10^7 \text{ erg}
                                                 1 J =
                            energy
                                                                        1 \text{ kg m s}^{-2} = 10^5 \text{ dyn}
                                                 1 N =
                               force
                                                 1 C =
                                                                                 1 \text{ A s} = 2.9979 \cdot 10^9 \text{ esu}
      electrostatic charge
                                                             3.3357 \cdot 10^{-30} \text{ C m} = 1 \cdot 10^{-18} \text{ esu cm}
                                                 1 D =
                                                                     1 \text{ kg s}^{-2} \text{ A}^{-1} = 10^4 \text{ gauss}
magnetic field strength
                                                 1 T =
                                                                            1 \text{ N m}^{-2} = 1 \text{ kg m}^{-1} \text{ s}^{-2}
                                               1 Pa =
                         pressure
                                              1 \text{ bar} =
                                                                               10^5 \text{ Pa} = 0.98692 \text{ atm}
```