NAME:

Instructions:

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
 - (a) show all your work, using only the exam papers, including the back of this sheet if necessary;
 - (b) specify the correct units, if any, for your final answers;
 - (c) use an appropriate number of significant digits for final numerical answers;
 - (d) stop writing and close your exam immediately when time is called.

Other notes:

- The first portion of the exam (problem 1) is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

1. **40** points.

- (a) Identify the following parameters as intensive (I) or extensive (E):
 - i. temperature
 - ii. entropy
 - iii. mass
- (b) If the rotational partition function of HF at 298 K is 9.88, what is the probability of a molecule being found in the rotational ground state (J = 0)?
- (c) A table of energies and degeneracies is given below for the lowest energy vibrational states of carbon dioxide. Calculate the partition function at 400 K using the data below. (The states are labeled for completeness, but are not needed for the solution.)

state	g	$\epsilon_{\rm vib}~({\rm cm}^{-1})$
(0,0,0)	1	0
(0,1,0)	2	667
(0,2,0)	3	1334
(1,1,0)	2	2000

- (d) What is the number of equipartition degrees of freedom in sulfur hexafluoride (SF₆)
 - i. when vibrations are *not* included?
 - ii. when vibrations are included?

- 2. We freeze N particles into a crystal lattice, so that they are all distinguishable. We energize the system by means of M photons, each photon with energy ϵ_0 . Each particle may absorb any number of photons. (However, the photons are not distinguishable; it doesn't matter in what order the photons were absorbed.)
 - (a) Write an expression for the ensemble size Ω in terms of the total energy $E = M\epsilon_0$.

(b) Find a usable expression for the entropy as a function of N and M, assuming both are large numbers.

- 3. The plot below shows the number of particles N in each rotational quantum level J in a simulation of ten particles. Based on these values, estimate
 - (a) the Gibbs entropy of the system in SI units and
 - (b) the partition function at this temperature.

4. A clever experiment measures the quantum states of neutrons bouncing on a surface in Earth's gravitational field. The potential energy of the neutrons is mgz, where the neutron mass $m=1.675\cdot 10^{-27}$ kg, gravitational acceleration is $g=9.81\,\mathrm{m\,s^{-2}}$, and z is the height of the neutron (where $z\geq 0$). Use our procedure for finding the equipartition principle to find an approximate equation for the average total energy (kinetic plus potential) per neutron in this experiment as a function of the temperature. Ignore translations along x and y.

Fundamental Constants

Avogadro's number	\mathcal{N}_A	$6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2}$	$5.29177249 \cdot 10^{-11} \text{ m}$
Boltzmann constant	$k_{ m B}$	$1.380658 \cdot 10^{-23} \text{ J K}^{-1}$
electron rest mass	m_e	$9.1093897 \cdot 10^{-31} \text{ kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \text{ C}$
permittivity factor	$4\pi\epsilon_0$	$1.113 \cdot 10^{-10} \mathrm{C^2 J^{-1} m^{-1}}$
gas constant	R	$8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$
	R	$0.08314510~{\rm L~bar~K^{-1}~mol^{-1}}$
	R	$0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$
hartree	$E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2 \hbar^2}$	$4.35980 \cdot 10^{-18} \text{ J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \text{ J s}$
	\hbar	$1.05457266 \cdot 10^{-34} \text{ J s}$
proton rest mass	m_p	$1.6726231 \cdot 10^{-27} \text{ kg}$
neutron rest mass	m_n	$1.6749286 \cdot 10^{-27} \text{ kg}$
speed of light	c	$2.99792458 \cdot 10^8 \text{ m s}^{-1}$

Unit Conversions

	K	${\rm cm}^{-1}$	${ m kJ~mol^{-1}}$	$kcal mol^{-1}$	erg	kJ
kHz =	$4.799 \cdot 10^{-8}$	$3.336 \cdot 10^{-8}$	$3.990 \cdot 10^{-10}$	$9.537 \cdot 10^{-11}$	$6.626 \cdot 10^{-24}$	$6.626 \cdot 10^{-34}$
MHz =	$4.799 \cdot 10^{-5}$	$3.336 \cdot 10^{-5}$	$3.990 \cdot 10^{-7}$	$9.537 \cdot 10^{-8}$	$6.626 \cdot 10^{-21}$	$6.626 \cdot 10^{-31}$
GHz =	$4.799 \cdot 10^{-2}$	$3.336 \cdot 10^{-2}$	$3.990 \cdot 10^{-4}$	$9.537 \cdot 10^{-5}$	$6.626 \cdot 10^{-18}$	$6.626 \cdot 10^{-28}$
K =	1	0.6950	$8.314 \cdot 10^{-3}$	$1.987\cdot10^{-3}$	$1.381 \cdot 10^{-16}$	$1.381 \cdot 10^{-26}$
$cm^{-1} =$	1.4388	1	$1.196 \cdot 10^{-2}$	$2.859\cdot10^{-3}$	$1.986 \cdot 10^{-16}$	$1.986 \cdot 10^{-26}$
$kJ \text{ mol}^{-1} =$	$1.203 \cdot 10^2$	83.59	1	0.2390	$1.661 \cdot 10^{-14}$	$1.661 \cdot 10^{-24}$
$kcal mol^{-1} =$	$5.032 \cdot 10^2$	$3.498\cdot 10^2$	4.184	1	$6.948 \cdot 10^{-14}$	$6.948 \cdot 10^{-24}$
eV =	$1.160 \cdot 10^4$	$8.066\cdot10^3$	96.49	23.06	$1.602 \cdot 10^{-12}$	$1.602 \cdot 10^{-22}$
hartree =	$3.158 \cdot 10^{5}$	$2.195\cdot 10^5$	$2.625\cdot 10^3$	$6.275\cdot 10^2$	$4.360 \cdot 10^{-11}$	$4.360 \cdot 10^{-21}$
erg =	$7.243 \cdot 10^{15}$	$5.034 \cdot 10^{15}$	$6.022 \cdot 10^{13}$	$1.439 \cdot 10^{13}$	1	10^{-10}
J =	$7.243 \cdot 10^{22}$	$5.034 \cdot 10^{22}$	$6.022 \cdot 10^{20}$	$1.439 \cdot 10^{20}$	10^{7}	10^{-3}
$dm^3 bar =$	$7.243 \cdot 10^{24}$	$5.034 \cdot 10^{24}$	$6.022 \cdot 10^{22}$	$1.439 \cdot 10^{22}$	$1.000 \cdot 10^9$	0.1000
kJ =	$7.243 \cdot 10^{25}$	$5.034 \cdot 10^{25}$	$6.022 \cdot 10^{23}$	$1.439 \cdot 10^{23}$	10^{10}	1

entropy
$$S_{\mathrm{Boltzmann}} = k_{\mathrm{B}} \ln \Omega$$
 $S_{\mathrm{Gibbs}} = -Nk_{\mathrm{B}} \sum_{i} \mathcal{P}(i) \ln \mathcal{P}(i)$ temperature $T = \left(\frac{\partial E}{\partial S}\right)_{V,N}$ canonical dist. $\mathcal{P}(\epsilon) = \frac{g(\epsilon)e^{-\epsilon/(k_{\mathrm{B}}T)}}{q(T)}$ Stirling's approx. $\ln N! \approx N \ln N - N$ partition func.s $q(T) = \sum_{\epsilon} g(\epsilon)e^{-\epsilon/(k_{\mathrm{B}}T)}$ ideal gas $PV = nRT$
$$3D \text{ box} \qquad \epsilon = \frac{h^2}{8mV^{2/3}} n^2$$
 $E_{\mathrm{vib}} = \omega_e v \qquad E_{\mathrm{rot}} = B_v J(J+1) \qquad g_{\mathrm{rot}} = 2J+1$ equipartition $E = \frac{1}{2}N_{\mathrm{ep}}Nk_{\mathrm{B}}T = \frac{1}{2}N_{\mathrm{ep}}nRT$

Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C \qquad \qquad \int a dx = a(x+C)$$

$$\int \frac{1}{x} dx = \ln x + C \qquad \qquad \int e^x dx = e^x + C$$

$$\int \ln x dx = x \ln x - x + C \qquad \qquad \int \frac{dx}{x(a+bx)} = -\frac{1}{a} \ln \left(\frac{a+bx}{x}\right) + C$$

$$\int \sin^2(ax) dx = \frac{x}{2} - \frac{\sin(2ax)}{4a} + C \qquad \qquad \int \cos^2(ax) dx = \frac{x}{2} + \frac{\sin(2ax)}{4a} + C$$

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx \qquad \qquad \int_a^b dx = x|_a^b = b - a$$

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \qquad \qquad \int_0^\infty e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a}\right)^{1/2}$$

$$\int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}} \qquad \qquad \int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1}{4} \left(\frac{\pi}{a^3}\right)^{1/2}$$

$$\int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}} \qquad \qquad \int_0^\infty x^{2n} e^{-ax^2} dx = \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)]\sqrt{\pi}}{2^{n+1}a^{n+(1/2)}}$$