1. 40 points.

(a) What are the quantum numbers for the wavefunction in a three-dimensional that has one node along x, three nodes along y, and no nodes along $z ? 2,4,1$
(b) For the $4 d$ subshell of an atom:
i. what is the value of l ? \square
ii. what are all the possible values of m_{l} ? $-2,-1,0,1,2$
iii. what are all the possible values of m_{s} ? $-1 / 2,1 / 2$
iv. how many orbitals are there? 5
(c) In the Hamiltonian for Be:
i. how many electron kinetic energy terms appear? 4 because there are 4 electrons.
ii. how many electron-electron repulsion terms appear? 6 because there are 6 distinct pairs of interacting electrons: $12,13,14,23,24,34$.
(d) For $2 s$ electrons in the ground state atoms $\mathrm{Be}, \mathrm{B}^{+}$, and Li^{-}:
i. which has the greatest amount of shielding? B^{+}because the higher nuclear charge will bring the electrons closer together on average, and that will increase the electron-electron repulsion energy.
ii. which has the lowest energy $2 s$ electrons (having the highest ionization energy)? B^{+}because the higher nuclear charge will stabilize the electrons more than the lower nuclear charges in Be and Li^{-}.
2. Find all $\left(n_{x}, n_{y}, n_{z}\right)$ with $E=7 \pi^{2} \hbar^{2} /\left(m a^{2}\right)$ in a 3 D box with sides $a, b=a$, and $c=2 a$. Solution: To start off, try writing the general expression for this energy, and then set it equal to the value in the problem and see what constraints appear:

$$
\begin{aligned}
E & =\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{a^{2}}+\frac{n_{z}^{2}}{(2 a)^{2}}\right)=\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{a^{2}}+\frac{n_{z}^{2}}{4 a^{2}}\right) \\
& =\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{1}{4 a^{2}}\right)\left(4 n_{x}^{2}+4 n_{y}^{2}+n_{z}^{2}\right)=\frac{\pi^{2} \hbar^{2}}{8 m a^{2}}\left(4 n_{x}^{2}+4 n_{y}^{2}+n_{z}^{2}\right) \\
& =\frac{7 \pi^{2} \hbar^{2}}{m a^{2}} \\
56 & =4 n_{x}^{2}+4 n_{y}^{2}+n_{z}^{2}
\end{aligned}
$$

So now we need to find all combinations of n_{x}, n_{y}, n_{z} such that the sum of the squares is 56 , keeping in mind that the quantum numbers must all be integers. One
way to do it is to recognize that $n_{z}<8$ and to start checking the possible values of n_{z} and seeing if any values of n_{x}, n_{y} work out:

n_{z}	$4\left(n_{x}^{2}+n_{z}^{2}\right)$	$n_{x}^{2}+n_{y}^{2}$	n_{x}, n_{y}
7	7	$7 / 4$ not integer	
6	20	5	1,2
	2,1		
5	31	$31 / 4$ not integer	
4	40	10	1,3
3	47	$47 / 4$ not integer	
2	52	13	2,3
1	3,2		
1	55	$55 / 4$ not integer	

The solutions are $(1,2,6),(2,1,6)(1,3,4),(3,1,4),(2,3,2),(3,2,2)$.
3. Find n, l, m_{l}, and Z and the property being evaluated for the one-electron atom in the integral below,
$-\frac{128 \hbar^{2}}{3 \pi a_{0}^{5}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} r\left(1-\frac{r}{a_{0}}\right) e^{-2 r / a_{0}} \sin \theta e^{-i \phi}\left\{\nabla^{2}\left[r\left(1-\frac{r}{a_{0}}\right) e^{-2 r / a_{0}} \sin \theta e^{i \phi}\right]\right\} r^{2} d r \sin \theta d \theta d \phi$
Solution: The integral has the form $\int \psi^{*} \hat{A} \psi d \tau$, where the integral is over all space and the operator \hat{A} is $-\hbar^{2} \nabla^{2}$. This operator is the momentum squared operator \hat{p}^{2}, and the integral evaluates the mean square momentum. Examining the part of the integrand in square brackets, this is the original wavefunction (although the constants have been factored out). The ϕ-dependent term is $e^{i \phi}$, so $m_{l}=1$. The angular part of the integral is first-order in $\sin \theta$, and the r^{l} term in the radial wavefunction is first-order, so $l=1$. The Laguerre polynomial $1-\frac{r}{a_{0}}$ in the radial wavefunction is first-order in r, so $n-l-1=1$, and $n=3$. Finally, to get the Z value, set the exponential $e^{-2 r / a_{0}}$ equal to $e^{-Z r /\left(n a_{0}\right)}$. This gives $2=Z / n$, so $Z=6$.
4. Derive the r value of the maximum radial probability density when $l=n-1$, as a function of Z and n. Solution: The $l=n-1$ radial wavefunctions have no Laguerre polynomial $(n-l-1=0)$ so these have the relatively simple form

$$
R_{n, n-1}(r)=A_{n l}\left(\frac{Z r}{a_{0}}\right)^{n-1} e^{-Z r /\left(n a_{0}\right)}
$$

We take the general form for the radial probability density, $R(r)^{2} r^{2}$, plug in the expression above for $R_{n, n-1}(r)$, and then take the derivative to find the maximum:

$$
\begin{aligned}
R_{n, n-1}(r)^{2} r^{2} & =A_{n l}^{2}\left(\frac{Z}{a_{0}}\right)^{2(n-1)} r^{2(n-1)+2} e^{-2 Z r /\left(n a_{0}\right)}=A^{\prime} r^{2 n} e^{-2 Z r /\left(n a_{0}\right)} & & \text { combine constants } \\
\frac{d}{d r}\left[R_{n, n-1}(r)^{2} r^{2}\right] & =A^{\prime}\left[2 n r^{2 n-1} e^{-2 Z r /\left(n a_{0}\right)}-\left(\frac{2 Z}{n a_{0}}\right) r^{2 n} e^{-2 Z r /\left(n a_{0}\right)}\right]=0 & & d(u v)=u d v-v d u \\
\left(\frac{2 Z}{n a_{0}}\right) r^{2 n} & =2 n r^{2 n-1} & & \text { divide out } A^{\prime}, e^{-2 Z r /\left(n a_{0}\right)}
\end{aligned}
$$

$$
r=\frac{2 n^{2} a_{0}}{2 Z}=\frac{n^{2}}{Z} a_{0}
$$

solve for r

