1. Write the normalized wavefunction for any state of an electron in a cubical box with length a on each side and total energy $E=14 \pi^{2} \hbar^{2} /\left(2 m_{e} a^{2}\right)$. Solution: From Table 1.2 or Fig. 1.23, we can see that the states with energy $E=14 \pi^{2} \hbar^{2} /\left(2 m V^{2 / 3}\right)$ are those with values for the quantum numbers 3,2 , and 1 (because $3^{2}+2^{2}+1^{2}=14$). Or we could figure it out (all of the quantum numbers must be less than 4 , or else the energy is too high, and at least one must be 3 , or the energy is too low). One of the corresponding wavefunctions is

$$
\psi_{3,2,1}(x, y, z)=\left(\frac{\sqrt{8}}{a^{2}}\right) \sin \left(\frac{3 \pi x}{a}\right) \sin \left(\frac{2 \pi y}{a}\right) \sin \left(\frac{\pi z}{a}\right)
$$

2. Let the atomic nucleus, instead of being a point charge, be a hollow sphere of radius r_{0}, such that the potential of the electron is

$$
U(r)=-\frac{Z e^{2}}{4 \pi \epsilon_{0}\left(r-r_{0}\right)}
$$

(a) Do the wavefunctions for this new system have separable angular and radial coordinates? yes
(b) Will the electron have any density at $r<r_{0}$? yes,
(c) Sketch below what you think a graph of the r-dependent part of the lowest energy wavefunction will look like. Solution: No nodes, should peak in the middle (away from the tunnelling regions), and should tunnel into the wall(s).
3. Identify the n, l, m_{l} quantum numbers of the orbital represented below. The angular wavefunction is shown, as a linear plot (rather than a polar plot) of $Y(\theta, \phi)$ vs. θ. The radial probability density, not the radial waverfunction, is given. The function does not depend on ϕ.

Three angular nodes, so $l=3$. No ϕ-dependence so $m_{l}=0$. One radial node (where $R(r)^{2}$ goes to zero in the middle), so $n-l-1=1 . n=5, l=3, m_{l}=0$
4. Write the expression necesary to calculate $\left\langle\phi^{2}\right\rangle^{1 / 2}$, the root mean square ϕ value of the $2 p_{m_{l}=1}$ state of Li^{2+}.
Solution: We only need the angular part of the wavefunction, which is the $l=$ $1, m_{l}=1$ spherical harmonic:

$$
\left[\int_{0}^{\pi} \int_{0}^{2 \pi} Y_{1}^{1 *}(\theta, \phi) \phi^{2} Y_{1}^{1}(\theta, \phi) \sin \theta d \theta d \phi\right]^{1 / 2}=\left[\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{3}{8 \pi}\right) \sin ^{3} \theta \phi^{2} d \theta d \phi\right]^{1 / 2}
$$

5. The table below lists several operators. If our wavefunctions for the one-electron atom are eigenfunctions of that operator, write "yes" and give the eigenvalue. If not, write "no."

operator	is $\psi_{n, l, m_{l}}(r, \theta, \phi)$ an eigenfunction?	eigenvalue
\hat{K}	no	
U	no	
\hat{H}	yes	$E=-Z^{2} E_{\mathrm{h}} /\left(2 n^{2}\right.$
\hat{L}^{2}	yes	$\hbar^{2} l(l+1)$
\hat{L}_{z}^{2}	yes	$\hbar^{2} m_{l}^{2}$
r	no	

