Exam 2

Fall 2011

Solutions

1. 40 points.

(a) What is the degeneracy of the lowest excited energy level for a particle in a box with dimensions $a=b=4.0 \mathrm{~nm}, c=2.0 \mathrm{~nm}$? Solution: 2
(b) Write the wavefunction for an electron in the ground state of a cubical box, with each side of length a. Solution:

$$
\psi_{1,1,1}(x, y, z)=\sqrt{\frac{8}{a^{3}}} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{a}\right) \sin \left(\frac{\pi z}{a}\right)
$$

(c) For the $6 p$ subshell,
i. what are the values of n and l, and what are the possible values of m_{l} ? $n=6, l=1, m_{l}=-1,0,1$
ii. how many radial nodes does the wavefunction have? $n-l-1=4$
iii. how many angular nodes does the wavefunction have? $l=1$
iv. how many orbitals are there in the subshell? number of values of $m_{l}=3$
v. what is the probability density at $r=0$? If $l=0$, then $R_{n, l}(r=0)=0$.
2. A particle in a three-dimensional cubical box of volume $8.0 \AA^{3}$ is in the $(2,2,2)$ state with a total kinetic energy of $6.0 \cdot 10^{-20} \mathrm{~J}$. Give the following:
(a) the zero-point energy (in J); Solution: For a cubical box, the energy of the $(2,2,2)$ state is at $2^{2}+2^{2}+2^{2}=12$ times $\varepsilon_{0}=\pi^{2} \hbar^{2} /\left(2 m a^{2}\right)$, while the ground state is at $3 \varepsilon_{0}$. The energy of the ground state is equal to the zero-point energy in this case (because the potential energy is a constant), $3 / 12$ of the $(2,2,2)$ energy is equal to $1.5 \cdot 10^{-20} \mathrm{~J}$.
(b) $\lambda_{\mathrm{dB}}($ in \AA) of the particle along any axis; Solution: Each side of the box has length $2.0 \AA$. With $n=2$ along each axis, the wavefunction undergoes one complete cycle from one end of the box to the other, so λ_{dB} is the length of the side: $2.0 \AA$.
(c) the new energy in the $(2,2,2)$ state if we double the length of each side of the box. Solution: Doubling the length a will decrease the value of $\varepsilon_{0}=\pi^{2} \hbar^{2} /\left(2 m a^{2}\right)$ by a factor of $2^{2}=4$, so the new energy is again $1.5 \cdot 10^{-20} \mathrm{~J}$.
(d) the mass (in kg) of the particle; Solution: For this one, we actually need a calculator. Solve the energy $E_{2,2,2}=12 \varepsilon_{0}$ for m :

$$
m=\frac{12 \pi^{2} \hbar^{2}}{2 a^{2} E_{2,2,2}}=\frac{12 \pi^{2}\left(1.055 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{2\left(2.0 \cdot 10^{-10} \mathrm{~m}\right)^{2}\left(6.0 \cdot 10^{-20} \mathrm{~J}\right)}=2.7 \cdot 10^{-28} \mathrm{~kg} .
$$

3. For the $7 d$ state of Li^{2+} with $m_{l}=-1$, calculate the following in SI units:
(a) the energy; Solution: Set $n=7$ and $Z=3$ and use the general equation for the energy of the one-electron atom:

$$
E_{n}=-\frac{Z^{2}}{2 n^{2}} E_{\mathrm{h}}=-\frac{3^{2}}{2 \cdot 7^{2}} E_{\mathrm{h}}=-\frac{9}{98} E_{\mathrm{h}}=-4.00 \cdot 10^{-19} \mathrm{~J} .
$$

(b) the value of the orbital angular momentum; Solution: For a d orbital, $l=2$. The eigenvalue of the \hat{L}^{2} operator is $L^{2}=\hbar^{2} l(l+1)$, so the value of L is $\hbar \sqrt{l(l+1)}=\sqrt{6} \hbar$, or $2.58 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}$.
(c) the projection of the orbital angular momentum onto the z axis. Solution: The eigenvalue of \hat{L}_{z} is $m_{l} \hbar$, which for $m_{l}=-1$ is $-\hbar$ or $-1.05 \cdot 10^{-34} \mathrm{~J}$ s.
4. To convert from the Cartesian coordinate x to polar coordinates, we use the relation

$$
x=r \sin \theta \cos \phi
$$

Write the expression we would need to solve in order to to find the root mean square value of x, equal to $\sqrt{\left\langle x^{2}\right\rangle}$, of the electron in the $4 f_{m_{l}=-3}$ state of atomic hydrogen. Solution: The atomic number is $Z=1$ and the wavefunction is

$$
\begin{aligned}
\psi_{4,3,-3}(r, \theta, \phi) & =R_{4,3}(r) Y_{3}^{-3}(\theta, \phi) \\
& =\left[\frac{1}{768 \sqrt{35}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(\frac{Z r}{a_{0}}\right)^{3} e^{-Z r /\left(4 a_{0}\right)}\right]\left[\sqrt{\frac{35}{64 \pi}} \sin ^{3} \theta e^{-3 i \phi}\right]
\end{aligned}
$$

The integrand in this case depends on r and on the angles, so we can't simplify by integrating over only radial or over only angular coordinates. However, the final integral is simplified by the fact that in evaluating $|\psi|^{2}$, the factors of $e^{-3 i \phi}$ and $\left(e^{-3 i \phi}\right)^{*}=e^{+3 i \phi}$ cancel to give a factor of 1 . the rms value of x is therefore:

$$
\begin{aligned}
\sqrt{\left\langle x^{2}\right\rangle} & =\left\{\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi}\left|R_{4,3} Y_{3}^{-3}(\theta, \phi)\right|^{2}(r \sin \theta \cos \phi)^{2} r^{2} \sin \theta d \theta d \phi\right\}^{1 / 2} \\
& =\left\{\left[\int_{0}^{\infty} R_{4,3}^{2} r^{4} d r\right]\left[\int_{0}^{\pi}\left|Y_{3}^{-3}(\theta, \phi)\right|^{2} \sin ^{3} \theta d \theta\right]\left[\int_{0}^{2 \pi} \cos ^{2} \phi d \phi\right]\right\}^{1 / 2} \\
& =\left\{\left[\frac{1}{768^{2} \cdot 35 a_{0}^{3}} \int_{0}^{\infty}\left(\frac{r}{a_{0}}\right)^{6} e^{-r /\left(2 a_{0}\right)} r^{4} d r\right]\left[\frac{35}{64 \pi} \int_{0}^{\pi} \sin ^{9} \theta d \theta\right]\left[\int_{0}^{2 \pi} \cos ^{2} \phi d \phi\right]\right\}^{1 / 2}
\end{aligned}
$$

