
Chemistry 410A Exam 2 Spring 2016

Solutions

1. 40 points.

(a) Write the complex conjugate ψ∗ of the wavefunction for the ml = +2 orbital of the

3d subshell of C5+. Solution: We need the wavefunction for n = 3, l = 2 (because

this is a d orbital), ml = −2 (because this is the complex conjugate), and Z = 6

(because the atom is carbon):
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(b) Circle the number for each allowed transition of a one-electron atom in the following

list (regardless of whether absorption or emission takes place). Solution: We are

applying the selection rule ∆l = ±1, so any transition where l changes by one unit

is okay. There is no strict selection rule on n.

i. 2s → 1s (∆l = 0)

ii. 2s → 3s (∆l = 0)

iii. 2s→ 3p (∆l = 1)

iv. 2s → 3d (∆l = 2)

v. 2s → 4s (∆l = 0)

vi. 2s→ 4p (∆l = 1)

vii. 5s→ 4p (∆l = 1)

viii. 4f → 3d (∆l = −1)

(c) Write the Hamiltonian for B2+. Use ∇2 to represent the Laplacian operator. So-

lution: This is a three-electron system with Z = 5, so we’ll have three electron

kinetic energy terms, three terms for the electron-nucleus interaction, and three

electron-electron repulsion terms (for r12, r23, and r13):
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(d) Write the ground state electron configuration for the S2− anion. Solution: This

is an 18-electron system (Z = 16 plus 2 for the −2 charge), so we fill the orbitals

in order until we’ve used up all the electrons: 1s22s22p63s23p6. You might also

recognize this as the sulfide anion, relatively stable because its electron configuration

fills the n = 3 shell.

2. A the single electron in an atomic ion has orbital wavefunction ψn,l,ml
(r, θ, φ). The

unnormalized imaginary part of the angular wavefunction of ψn,l,ml
(r, θ, φ) is equal to

−i sin θ cos θ sinφ. The radial probability density is graphed below. Give the following

values, and show or briefly explain how you determined each:
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(a) n = 4

(b) l = 2

(c) ml = −1

(d) Z = 6.
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Solution: The Legendre polynomial (sin θ cos θ) is second order, so l = 2. The imaginary

part of e−mlφ is i sin(mlφ). Here since we the factor of −i sinφ indicates that ml = −1.

(If we’re not sure, we can also just check the table of angular wavefunctions. Only the

l = 2, |ml| = 1 functions have this θ-dependence, but we’d still have to work out the sign

of ml.) Any nodes in the radial wavefunction are indicated by the positions between 0

and ∞ at which the radial probability density is equal to zero. There is only one such

point, at r = 2a0, so the number of radial nodes is one, and n − l − 1 = 1. Therefore

n = l+2 = 4. Finally, the radial node in the 4d subshell will appear where the Laguerre

polynomial is equal to zero:

(

1− Zr

12a0

)

= 1− Z(2a0)

12a0
= 1− Z

6
= 0 Z = 6.

3. The Bohr model of the atom predicts that rn = n2

Z a0.

(a) Find the value of 1/r for a 4f electron, according to the Bohr model of the hydrogen

atom. Leave the answer in terms of a0. Solution:

1

rn=4
=

Z

n2 a0
=

1

16a0
.

(b) Now find the quantum mechanical expectation value 〈1/r〉 for the same 4f elec-

tron. Solution: We use the average value theorem to solve this, using the radial
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wavefunction for n = 4, l = 3:
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4. (a) Find L for an electron in the 2p subshell. h̄
√

1(2) =
√
2h̄.

(b) Find L for an electron in the 3d subshell. h̄
√

2(3) =
√
6h̄.

(c) Find ∆L− h̄ for the 2p → 3d subshell. Solution:

∆L− h̄ =
(√

6−
√
2− 1

)

h̄ = (2.449 − 1.414 − 1)h̄ = 0.035h̄.

For l ≥ 1, the error in setting the photon angular momentum equal to h̄ is less than

4%. This error decreases as l increases.

(d) Explain the origin of this error. If you remember the explanation I offered in class,

you can use that. Otherwise, a better explanation is available if you know: (i)

the photon has a linear momentum p = h/λ, and (ii) like p and x, there is an

uncertainty principle for p and L. Solution: My explanation was that the angular

momentum for the interaction between two particles (such as the atom and the

photon in this case) is conserved if we treat the system as a two-particle quantum

system, rather than looking at each particle independently, and this is how we would

properly treat the quantum mechanics of the problem. This is correct, but doesn’t

explain how the photon angular momentum seems to adjust itself to fit different

atomic transitions. For example, the 1s → 2p transition requires the photon to

contribute
√
2h̄ = 1.414h̄, which is more than we need for the 2p → 3d transition in

the problem.

The better answer is that the angular momentum L of the photon is intrinsically

uncertain if the linear momentum p is known. The relationship is important because

the linear momentum of the photon h/λ is directly related to the photon energy:

Ephoton = hc/λ = pc. If we know the transition energy, then Ephoton is well-defined,

and the angular momentum of the photon must be uncertain. That means that

some photon-atom interactions will always be able to satisfy the angular momentum

conservation, while others will not.
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