
Chemistry 410B Exam 2 Fall 2016

Solutions

1. 40 points.

(a) Write an expression (in terms of B and T ) for the probability of finding a diatomic

molecule in the J = 1 rotational state at temperature T . Solution:

P(J = 1) =
g(J)e−ǫrot/(kBT )

qrot(T )
=

(2J + 1) e−BJ(J+1)/(kBT )

kBT/B
=

3B e−2B/(kBT )

kBT
.

(b) If the interaction energy for two rotating dipoles is initially 4.0 kJmol−1, what is

the new interaction energy for the following changes:

i. If T (in K) doubles? Solution: u decreases by factor of 2, so 2.0 kJmol−1.

ii. If R doubles? Solution: u decreases by factor of 26 = 64, so 0.0625 kJmol−1 .

(c) What volume in L is occupied by 2.00mol of an ideal gas at 1.50 bar and 350.0K?

Solution:

V =
nRT

P
=

(2.00mol)(0.083145 bar LK−1 mol−1)

(350.0K)(1.50 bar)
= 38.8 L.

(d) Identify each of the following particles as a boson (B) or a fermion (F):

i. electron Solution: Each electron, proton, and neutron has a spin of 1/2. Any

combination of an even total number of these particles is a boson, any odd

number is a fermion. F.

ii. 2H+ Solution: 1p+1n B.

iii. 13C Solution: 6p+7n+6e F.

iv. 14N Solution: 7p+7n+7e F.

2. Evaluate the following limiting values. If a numerical answer is not possible, give the

simplest algebraic expression.

(a) limT→0 qrot(T ) = limT→0
∑i

J=0 nfty(2J +1)e−BJ(J+1)/(kBT ) = 1+0+ 0+ . . . = 1.

(b) limT→∞ qrot(T ) = limT→∞

kBT
B = ∞.

(c) limωe→∞ qvib(T ) = limωe→∞(1− e−ωe/(kBT ))−1 = (1− 0)−1 = 1.

(d) limu(R)→0 Q
′

U (T, V ) = V N . (assume N particles)

(e) limv→0Pv(v) = limv→0 v
2e−mv2/(2kBT ) = (0)(1) = 0.

(f) limv→∞ Pv(v) = limv→0 v
2e−mv2/(2kBT ) = limv→0 v

2(0) = 0.

(g) limR→0 G(R) = limR→0 e
−u(R)/(kBT ) = 0. because limR→0 u(R) = ∞.

(h) limT→∞B2(T ) = limT→∞

(

b− a
RT

)

= b.

3. We open a small hole in one side of a container of water vapor at 373K and connect it

to a chilled tube. Only molecules with v ≈ vZ leave the container through the tube.
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(a) What is the average speed of the molecules in the container? Solution:

〈v〉 =
√

8kBT

πm
=

[

8(1.381 · 10−23 JK−1)(373K)

π(18.0 amu)(1.661 · 10−27 kg amu−1)

]1/2

= 662m s−1.

(b) What is the average speed of the molecules exiting the tube? Solution: The

molecules leaving are still characterized by a Maxwell-Boltzmann distribution, be-

cause the canonical distribution predicts the probability of being at a particular

value of vZ will be proportional to v2Z e−mv2
Z
/(2kBT ). However, the distribution of

values of vZ in the container is different from the distribution of speeds v, because

〈v〉 =
〈

√

v2X + v2Y + v2Z

〉

=

〈

√

3v2Z

〉

=
〈√

3vZ

〉

=
√
3 〈vZ〉 .

Recall that we can set
〈

v2X
〉

=
〈

v2Y
〉

=
〈

v2Z
〉

because motion along each of the three

axes is equivalent. Therefore,

〈vexit〉 = 〈vZ〉 =
1√
3
〈v〉 = 382m s−1.

(c) If we use the speeds to determine the temperature, what is the temperature of the

vapor exiting the tube? Solution: The speed is proportional to
√
T , so temperature

is proportional to v2. Therefore, if the speed decreases by a factor of
√
3, the

apparent temperature is lower by a factor of 3:

Teff =
373K

3
= 124K.

4. For three interacting particles, briefly show the steps and approximations used to rewrite

Q′

U =

∫

∞

−∞

. . .

∫

∞

−∞

e−U(X1...Z3)/(kBT ) dX1 . . . dZ3

in terms of an integral over the single variable R. Solution: Begin with the approxima-

tion that the overall potential energy U is the sum of all pair potential energies u:

U(X1 . . . Z3) ≈
∑

pairs ij

u(Rij) = u(R12) + u(R23) + u(R13)

Q′

U =

∫

∞

−∞

. . .

∫

∞

−∞

e−U(X1...Z3)/(kBT ) dX1 . . . dZ3

≈
∫

∞

−∞

. . .

∫

∞

−∞

e−[u(R12)+u(R23)+u(R13)]/(2kBT ) dX1 . . . dZ3.

Each dX dY dZ is equivalent to 4πR2 dR, where we integrate R from 0 to ∞:

Q′

U ≈ (4π)3
∫

∞

0

∫

∞

0

∫

∞

0
e−[u(R12)+u(R23)+u(R13)]/(2kBT )R2

12 dR12 R
2
23 dR23 R

2
13 dR13

= (4π)3
∫

∞

0
e−u(R12)/(kBT )R2

12 dR12

∫

∞

0
e−u(R23)/(kBT )R2

23 dR23

∫

∞

0
e−u(R13)/(kBT )R2

13 dR13

and these three integrals are all equal, so we can just set Rij = R:

=

[

(4π)

∫

∞

0
e−u(R)/(kBT )R2 dR

]3

.
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