Exam 3

Fall 2008 Solutions

1. 40 points.
(a) The Hamiltonian for atomic Li can be written
$\hat{H}=-\frac{\hbar^{2}}{2 m_{e}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)+\frac{e^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{12}}+\frac{1}{r_{13}}+\frac{1}{r_{23}}\right)-\frac{3 e^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\right)$.
Circle the perturbation and box the zero-order Hamiltonian.
(b) Referring to the Hartree-Fock orbital energies for ground state atomic lithium:
i. what is the ionization energy of the $2 s$ electron? $0.196 E_{\mathrm{h}}$
ii. what is the total ionization energy to form Li^{3+} ? $7.433 E_{\mathrm{h}}$
iii. is the total Hartree-Fock energy higher (less negative) or lower (more negative) in the lowest excited state than in the ground state?
iv. is the $1 s$ orbital energy higher (less negative) or lower (more negative) in the lowest excited state than in the ground state?
(c) For the ${ }^{4} F$ ground state term of atomic iridium,
i. what is the value of L ? 3
ii. what is the value of S ? $3 / 2$
(d) Write the Hamiltonian for H_{3}^{+}. Solution: There are two electrons and three nuclei:

$$
\begin{align*}
\hat{H} & =-\frac{\hbar^{2}}{2 m_{e}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{2}^{2}+\frac{e^{2}}{4 \pi \epsilon_{0}}\left[-\frac{1}{r_{\mathrm{A} 1}}-\frac{1}{r_{\mathrm{B} 1}}-\frac{1}{r_{\mathrm{C} 1}}-\frac{1}{r_{\mathrm{A} 2}}-\frac{1}{r_{\mathrm{B} 2}}-\frac{1}{r_{\mathrm{C} 2}}\right. \\
& \left.+\frac{1}{r_{12}}+\frac{1}{R_{\mathrm{AB}}}+\frac{1}{R_{\mathrm{AC}}}+\frac{1}{R_{\mathrm{BC}}}\right]-\frac{\hbar^{2}}{2 m_{\mathrm{H}}}\left(\nabla_{\mathrm{A}}^{2}+\nabla_{\mathrm{B}}^{2}+\nabla_{\mathrm{C}}^{2}\right) \tag{1}
\end{align*}
$$

2. The variational method is used to solve the Schrödinger equation for a particle of mass m with potential energy $U(r)=k r$, starting with a variational (normalized) wavefunction $\psi(r)=2 a^{3 / 2} e^{-a r}$. The variational parameter is a. The expectation value of the energy obeys the equation $\langle E\rangle=\frac{\hbar^{2} a^{2}}{2 m}+\frac{3 k}{2 a}$. Find the optimized wavefunction and its energy. Solution: We want to vary a to get the lowest possible value for $\langle E\rangle$, so we take the derivative to find the minimum of $\langle E\rangle$ as a function of a :

$$
\begin{aligned}
\frac{\partial\langle E\rangle}{\partial a} & =\frac{\partial}{\partial a}\left(\frac{\hbar^{2} a^{2}}{2 m}+\frac{3 k}{2 a}\right)=\frac{\hbar^{2} a}{m}-\frac{3 k}{2 a^{2}}=0 \\
\frac{\hbar^{2} a}{m} & =\frac{3 k}{2 a^{2}} \quad a^{3}=\frac{3 k m}{2 \hbar^{2}} \quad a=\left(\frac{3 k m}{2 \hbar^{2}}\right)^{1 / 3} \\
\psi(r) & =2\left(\frac{3 k m}{2 \hbar^{2}}\right)^{1 / 2} \exp \left[-\left(\frac{3 k m}{2 \hbar^{2}}\right)^{1 / 3} r\right]
\end{aligned}
$$

$$
\begin{aligned}
\langle E\rangle & =\left(\frac{\hbar^{2}}{2 m}\right)\left(\frac{3 k m}{2 \hbar^{2}}\right)^{2 / 3}+\left(\frac{3 k}{2}\right)\left(\frac{2 \hbar^{2}}{3 k m}\right)^{1 / 3} \\
& =\left(\frac{3}{2}\right)^{5 / 3}\left(\frac{k^{2} \hbar^{2}}{m}\right)^{1 / 3}
\end{aligned}
$$

3. What is the one term missing from the following symmetrized wavefunction for the $1 s^{2} 2 s 3 s$ excited state of Be ?

$$
\left.\begin{array}{rlll}
\Psi= & 1 s 1 s 2 s 3 s \alpha \beta \alpha \alpha & -1 s 1 s 3 s 2 s \alpha \beta \alpha \alpha & -1 s 2 s 1 s 3 s \alpha \alpha \beta \alpha \\
& +1 s 3 s 1 s 2 s \alpha \alpha \beta \alpha & -1 s 3 s 2 s 1 s \alpha \alpha \alpha \beta & +1 s 1 s 2 s 3 s \beta \alpha \alpha \alpha
\end{array}-1 s 1 s 3 s 2 s \beta \alpha \alpha \alpha \alpha\right)
$$

Solution: (i) For the electrons to be indistinguishable, each electron must be equally represented in the four states $1 s \alpha, 1 s \beta, 2 s \alpha$, and $3 s \alpha$. There are 6 terms with electron 1 in the $1 s \alpha$ state, 6 terms where it's in the $1 s \beta$, and 6 terms with electron 1 in the $3 s$ orbital. So we're missing a term with electron 1 in the $2 s$ orbital. (ii) If electron 1 is in the $2 s$, then electron 2 has an equal chance of being in the $1 s \alpha$ state, the $1 s \beta$, or the $3 s$. There is only one term with $2 s(1) 3 s(2)$, so we need one more. The one we have is $2 s 3 s 1 s 1 s \alpha \alpha \alpha \beta$, so the missing term has the other arrangement for electron 3 and 4 , and looks like $2 s 3 s 1 s 1 s \alpha \alpha \beta \alpha$. (iii) For Ψ to be antisymmetric under exchange of two electron labels, there must be an equal number of terms with and without minus signs in front. Of the 5 terms shown with electron 1 in the $2 s, 2$ have minus signs and 3 don't. So the missing term has a leading minus sign. The missing term is $-2 s 3 s 1 s 1 s \alpha \alpha \beta \alpha$.
4. Find all the term states, including J values, resulting from the electron configuration [Kr] 5 s $4 d$ of strontium, and list the term symbols in order of increasing energy. Don't worry about the order of the J values. (It is not necessary to work through the whole vector model to find the terms; there are 20 microstates if you do.) Solution: First, we ignore all the electrons in filled subshells. The overall L value must be 2 , because the $5 s$ electron has no orbital angular momentum, and the d electron has $l=2$, so the vector sum of the l 's is 2 . The only possible values of S are 0 (if the two electron spins cancel) and 1 (if they add up). So the two terms resulting are the ${ }^{1} D$ and ${ }^{3} D$. For the ${ }^{1} D$, the only J value is $|L-S|=L+S=2$. For the ${ }^{3} D$, the possible J values are 1,2 , and 3 . The higher-spin ${ }^{3} D$ state is the lowest in energy: ${ }^{3} D_{1,2,3}<{ }^{1} D_{2}$.

