1. In the table below, circle the orbital with the lowest energy in each row (i.e., the most stable orbital).

a.	$\mathrm{He} 1 s$	$\mathrm{U} 1 s$	$\mathrm{Li} 1 s$
b.	$\mathrm{Fe} 3 d$	$\mathrm{Fe} 4 s$	$\mathrm{Fe} 4 p$
c.	$\mathrm{F} 1 s$	$\mathrm{~F}+1 s$	$\mathrm{~F}^{-} 1 s$
d.	$\mathrm{Li} 2 s$	$\mathrm{Na} 3 s$	$\mathrm{~K} 4 s$
e.	$\mathrm{O} 2 p$	$\mathrm{~F} 2 p$	$\mathrm{Ne} 2 p$

U has highest Z value; shielding doesn't much affect the core electrons The expected ordering, and can be verified from Fe ground state config.
F^{+}will have lower electron-electron repulsion because fewer electrons Valence electron is harder to ionize so more stable at lower n electron doesn't completely cancel the added proton
e. $\begin{array}{llll}\mathrm{O} 2 p & \mathrm{~F} 2 p \quad \text { Ne } 2 p \text { Across a row, orbital gets more stable because each added }\end{array}$
2. The zero-order electronic energy of the Be atom is calculated assuming that each electron interacts with only the nucleus, as though in a one-electron atom.
(a) Calculate the complete zero-order energy (in E_{h}) of ground state Be. Solution: The ground state electron configuration is $1 s^{2} 2 s^{2}$, and $Z=4$, so

$$
E_{0}=\sum_{i=1}^{4}-\left(\frac{Z^{2}}{2 n_{i}^{2}}\right)=-\frac{16}{2}\left(\frac{1}{1^{2}}+\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{2^{2}}\right)=-20.00 E_{\mathrm{h}} .
$$

(b) Calculate the total first-order energy (in E_{h}) of ground state Be.

$$
\begin{aligned}
& \iint 1 s(1)^{2} 1 s(2)^{2}\left(\frac{e^{2}}{4 \pi \epsilon_{0} r_{12}}\right) d \tau_{1} d \tau_{2}=2.494 E_{\mathrm{h}} \\
& \iint 2 s(1)^{2} 2 s(2)^{2}\left(\frac{e^{2}}{4 \pi \epsilon_{0} r_{12}}\right) d \tau_{1} d \tau_{2}=0.598 E_{\mathrm{h}} \\
& \iint 1 s(1)^{2} 2 s(2)^{2}\left(\frac{e^{2}}{4 \pi \epsilon_{0} r_{12}}\right) d \tau_{1} d \tau_{2}=0.839 E_{\mathrm{h}}
\end{aligned}
$$

Solution: We count the repulsion energy for each pair of electrons once. Because there are two $1 s$ electrons and two $2 s$ electrons, there are four distinct $(1 s)(2 s)$ interactions, so we count that integral four times to get the first-order correction. To get the total energy to first order, we add that correction to E_{0} :

$$
\begin{aligned}
E_{1}^{\mathrm{PT}} & =2.494+0.598+4(0.839)=6.448 E_{\mathrm{h}} \\
E_{0}+E_{1}^{\mathrm{PT}} & =-20.00+6.448 E_{\mathrm{h}}=-13.55 E_{\mathrm{h}} .
\end{aligned}
$$

As a check, we see that this value is somewhat higher than the correct total energy $-14.668 E_{\mathrm{h}}$ in Table 3.1, but much closer than the zero-order energy.
3. Two atoms of ${ }^{3} \mathrm{He}$ occupy the ground state of a one-dimensional box of length a. The ${ }^{3}$ He nucleus has a spin of $1 / 2$ and the two electrons have canceling spins, so each atom can be treated as a single particle with total spin of $1 / 2$ and spin wavefunctions α and β (as for a single electron). Write the normalized and symmetrized twoatom wavefunction for this state. Solution: The two atoms will have the same spatial wavefunction, the $n=1$ ground state function for the particle in a onedimensional box, so $\psi(1,2)=\psi_{n=1}\left(x_{1}\right) \psi_{n=1}\left(x_{2}\right)$. Because this is a symmetric spatial wavefunction, and because the atoms are spin $1 / 2$ fermions, the spin wavefunction must be the antisymmetric wavefunction $(\alpha \beta-\beta \alpha) / \sqrt{2}$:
$\Psi(1,2)=\psi_{n=1}\left(x_{1}\right) \psi_{n=1}\left(x_{2}\right)(\alpha \beta-\beta \alpha) / \sqrt{2}=\left(\frac{2}{a}\right) \sin \left(\frac{\pi x_{1}}{a}\right) \sin \left(\frac{\pi x_{2}}{a}\right)(\alpha \beta-\beta \alpha) / \sqrt{2}$.
4. Write the Hamiltonian for LiH^{+}. Solution: We need kinetic energy terms for the two nuclei and the three electrons, and a potential energy term for each of the ten interactions between the five particles:

$$
\begin{aligned}
\hat{H} & =-\frac{\hbar^{2}}{2 m_{e}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)-\frac{\hbar^{2}}{2 m_{\mathrm{H}}} \nabla_{\mathrm{H}}^{2}-\frac{\hbar^{2}}{2 m_{\mathrm{Li}}} \nabla_{\mathrm{Li}}^{2} \\
& +\frac{e^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{1} 2}+\frac{1}{r_{2} 3}+\frac{1}{r_{1} 3}+\frac{3}{R_{\mathrm{Li}-\mathrm{H}}}-\frac{3}{r_{1, \mathrm{Li}}}-\frac{3}{r_{2, \mathrm{Li}}}-\frac{3}{r_{3, \mathrm{Li}}}-\frac{1}{r_{1, \mathrm{H}}}-\frac{1}{r_{2, \mathrm{H}}}-\frac{1}{r_{3, \mathrm{H}}}\right)
\end{aligned}
$$

5. A neutral atom from the second row of the periodic table ($\mathrm{Li}-\mathrm{Ne}$) has an excited electron configuration that leads to the term states ${ }^{2} D,{ }^{2} P, 2^{S}$, and ${ }^{4} P$.
(a) Write these term symbols, including J values, in order of increasing energy. Solution: Highest S comes first, then for the doublet terms the energy increases as L drops. The correct ordering of the J values actually depends on your answer to the following question. ${ }^{4} P_{1 / 2,3 / 2,5 / 2},{ }^{2} D_{3 / 2,5 / 2},{ }^{2} P_{1 / 2,3 / 2},{ }^{2} S_{1 / 2}$.
(b) Identify the atom and the lowest energy electron configuration that leads to these terms. Solution: The term symbols tell us the possible values for the total spin are $S=3 / 2$ (but only when $L=1$) and $S=1 / 2$ (when L can be 0,1 , or 2). To get a half-integer value of S, the electron configuration must have an odd number of electrons. To get $S=3 / 2$ we would need three electrons, each in a separate orbital and all with the same m_{s}. The three electrons could be in the $2 p$ subshell, but then there's no way to get $L=1$ at the same time (the m_{l} values would all cancel). Instead, we can put one electron in the $2 s$ orbital, and the other two in the $2 p$ orbitals. We check that this also allows $L=2$ (both $2 p$ electrons in the $m_{l}=1$ orbital give $M_{L}=2$), but only when two of the spins cancel, so $S=1 / 2$. So the lowest energy electron configuration with these terms is $1 s^{2} 2 s 2 p^{2}$, and with five electrons, that means the neutral atom has $Z=5$, so it must be B . It turns out that you get the same set of terms with $1 s^{2} 2 s 2 p^{4}$ N , but then the higher J values will be the lower energy.
