Chemistry 410B

Exam 3 Solutions

1. 40 points.

- (a) Which statements are true for a perfect blackbody? **Solution:** As *T* increases, more more photons are radiated (and so more energy) at all frequencies, but the maximum shifts towards higher frequency. As *T* increases:
 - i. more energy is radiated at low frequency. T
 - ii. more energy is radiated at high frequency.
 - iii. the most intense radiation shifts to longer wavelength. F It shifts to higher *frequency*.iv. the photon number *and* average energy both increase. T
- (b) Add the periodic boundary conditions and calculate the energy of the Ising model lattice below.

(c) Two gas-phase samples, Ar ($\sigma = 36 \text{ Å}^2$, m = 40 amu) and C₂H₂ ($\sigma = 72 \text{ Å}^2$, m = 26 amu), have the same pressure and temperature. Given the values for Ar below, write the corresponding values for C₂H₂ in the same units.

parameter	Ar	C_2H_2	
$ ho(\mathrm{m}^{-3})$	$4.3 \cdot 10^{23}$	$4.3 \cdot 10^{23}$	depends only on P and T
λ (m)	$6.5 \cdot 10^{-6}$	$3.2 \cdot 10^{-6}$	inversely prop. to σ
$\langle v_{\rm AA} \rangle \ ({\rm ms^{-1}})$	696	863	prop. to $\sqrt{1/m}$
$\gamma ({ m s}^{-1})$	$1.1\cdot 10^8$	$2.7\cdot 10^8$	equal to $\rho \langle v_{\rm AA} \rangle \sigma$

(d) The diffusion constant for SF_6 in air is $0.150 \text{ cm}^2 \text{ s}^{-1}$ at 373 K. Find r_{rms} after 1 hour. Solution: Use the Einstein diffusion equation:

$$\langle r^2 \rangle^{1/2} = \sqrt{6Dt} = [6(0.150 \,\mathrm{cm}^2 \,\mathrm{s}^{-1})(3600 \,\mathrm{s})]^{1/2} = 57 \,\mathrm{cm}$$

2. Graph $\mathcal{P}(k)$ for six coin flips. Solution: Use the equation for the discrete distribution $\mathcal{P}(k)$ when N is small. Because N = 6 is even, only even values of k will be possible:

$$\mathcal{P}(k=\pm 6) = \frac{6!}{2^6 \, 6! \, 0!} = \frac{1}{64} = 0.0156 \qquad \qquad \mathcal{P}(k=\pm 4) = \frac{6!}{2^6 \, 5! \, 1!} = \frac{6}{64} = 0.0937$$
$$\mathcal{P}(k=\pm 2) = \frac{6!}{2^6 \, 4! \, 2!} = \frac{15}{64} = 0.2344 \qquad \qquad \mathcal{P}(k=0) = \frac{6!}{2^6 \, 3! \, 3!} = \frac{20}{64} = 0.3125$$

As a check, these probabilities for all 7 possible values of k add up to 1.

3. In an ideal gas sample, PV is one measure of the energy content of the sample. If we set $PV_0 = \langle E_{AB} \rangle$, where $\langle E_{AB} \rangle$ is the average energy per collision, find an expression for the characteristic volume V_0 in terms of the mean free path and collision cross section. Solution: This is a mixand-match algebra problem. In terms of our collision parameters, P is related to ρ which in turn determines λ , and $\langle E_{AB} \rangle$ is equal to $3k_BT/2$. We can start from that and see where it leads us, keeping in mind that the final expression should depend on λ and σ only:

$$V_0 = \frac{\langle E_{AB} \rangle}{P} = \frac{3k_B T/2}{\rho R T/\mathcal{N}_A} = \frac{3k_B T/2}{\rho k_B T}$$
$$= \frac{3}{2\rho} = \boxed{\frac{3}{2}\lambda\sigma}.$$

4. Find an equation for the blackbody $\rho(\nu)$ assuming the energy is stored in quantum rotations. Solution: Starting from the general Eq. 15.25,

$$\rho(\nu) = \frac{8\pi\nu^2 \left<\epsilon\right>}{c^3},$$

we need the average rotational energy, rather than the average vibrational energy. To get that, we use the average value theorem and the partition function for rotation:

$$\begin{split} \langle \epsilon_{\rm rot} \rangle &= \int_0^\infty \mathcal{P}(J) \epsilon_{\rm rot} \, dJ = \frac{1}{q_{\rm rot}} \int_0^\infty (2J+1) e^{-BJ(J+1)/(k_B T)} \, BJ(J+1) \, dJ \\ &= \frac{B}{k_B T} \int_0^\infty e^{-Bx/(k_B T)} \, Bx \, dx = \frac{B^2}{k_B T} \left(\frac{1}{[B/(k_B T)]^2}\right) \qquad \text{set } x = J(J+1) \\ &= \frac{B^2}{k_B T} \left(\frac{k_B^2 T^2}{B^2}\right) = k_B T \end{split}$$

which we also could have predicted from the equipartition principle. Now we put this into the equation above for $\rho(\nu)$:

$$\rho(\nu) = \frac{8\pi k_B T \nu^2}{c^3}$$

This diverges to infinity if you integrate over all frequencies, because the integral approximation to $q_{\rm rot}$ is not exact.