NAME:

Instructions:

1. Keep this exam closed until instructed to begin.
2. Please write your name on this page but not on any other page.
3. Please silence any noisy electronic devices you have.
4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
5. To receive full credit for your work, please
(a) put your name on your exam;
(b) show all your work, using only the exam papers, including the back of this sheet if necessary;
(c) specify the correct units, if any, for your final answers;
(d) use an appropriate number of significant digits for final numerical answers;
(e) stop writing and close your exam immediately when time is called.

Other notes:

- Problem 1 (covering all of page 3) of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

1. 40 points.

(a) Write the perturbation term \hat{H}^{\prime} in the Hamiltonian for the lithium atom.
(b) Calculate the zero order energy in E_{h} for the ground state lithium atom.
(c) The binding region is the region between two nuclei in which the binding force (as we've defined it) is positive, and forces pulling the two nuclei together exceed the forces pulling them apart. Indicate whether each of the following changes, if we could make them, would increase (write "+") or decrease (write "-") the volume of the binding region:
i. making the electron charge more negative
ii. making the nuclear charge more positive
iii. increasing the separation between the nuclei.
(d) Write the Hamiltonian for the molecule HeH^{-}. Use ∇^{2} to represent the Laplacian operator.
2. Fill in the electron configurations in table below for the ground state of F and the lowest excited state of F^{-}. In the other rows of the table, Hartree-Fock energy values for F atom are given. For F^{-}, write \uparrow if the value is greater than for F atom, \downarrow if it is less than for F atom, and " 0 " if it is the same. (As always, when comparing negative numbers, "greater" means "less negative.")

	ground state F	lowest excited state \mathbf{F}^{-}
electron configuration		
total energy	$-99.402 E_{\mathrm{h}}$	
average energy per electron	$-11.045 E_{\mathrm{h}}$	
$1 s$ orbital energy	$-26.368 E_{\mathrm{h}}$	
total kinetic energy	$99.300 E_{\mathrm{h}}$	
average kinetic energy per electron	$11.033 E_{\mathrm{h}}$	
total electron-electron repulsion	$39.796 E_{\mathrm{h}}$	

3. For the $1 s^{2} 2 s^{2} 2 p^{4} 3 p^{4}$ excited electron configuration of atomic calcium:
(a) Begin to apply the vector model to this system by drawing out any four distinct, valid microstates (called basis states in the text) for this electron configuration, and give the M_{L} and M_{S} values for each.
(b) In the complete vector model, how many microstates have all the electrons paired?
(c) There were 15 microstates for the ground state oxygen atom. What is the total number of microstates in this case?
(d) For the $1 s^{2} 2 s^{2} 2 p^{4} 3 p^{2}$ configuration, what is the greatest possible value of S ?
(e) What is the greatest possible value of L ?
(f) What is the greatest possible value of J ?
4. Consider a set of three ${ }^{16} \mathrm{O}$ atoms. The nuclear spin of the ${ }^{16} \mathrm{O}$ nucleus is zero.
(a) What is the total spin quantum number S of each oxygen atom in its ground electronic term state?
(b) Is each oxygen atom (counting all the particles in the atom) a boson or a fermion?
(c) We place the three atoms in a one-dimensional box with quantum states identified by the quantum number n, where for example the spatial wavefunction of the $n=1$ state of oxygen atom 2 may be written $\psi_{1}(2)$. Write the three-particle spatial wavefunction for the lowest energy state of the three atoms in this box.
(d) Let the total spin quantum number of all three atoms be equal to S_{T}, with projection onto the z axis given by the magnetic quantum number $M_{S T}$. What is the maximum value of S_{T} ?
(e) For that maximum value of S_{T}, give all the possible values of $M_{S T}$.
(f) Finally, use α to label the spin wavefunction for the maximum value of $M_{S T}$, use β for the next lowest $M_{S T}$, and γ for the next, and so on. Write one valid spin wavefunction to go with your spatial wavefunction such that $M_{S T}=0$.

Fundamental Constants

Avogadro's number	\mathcal{N}_{A}	$6.0221367 \cdot 10^{23} \mathrm{~mol}^{-1}$
Bohr radius	$a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}$	$5.29177249 \cdot 10^{-11} \mathrm{~m}$
Boltzmann constant	k_{B}	$1.380658 \cdot 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
electron rest mass	m_{e}	$9.1093897 \cdot 10^{-31} \mathrm{~kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \mathrm{C}$
permittivity factor	$4 \pi \epsilon_{0}$	$1.113 \cdot 10^{-10} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
gas constant	R	$8.314510 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
	R	$0.08314510 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
	R	$0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{an} \mathrm{mol}^{-1}$
hartree	$E_{\mathrm{h}}=\frac{m_{e} e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2}}$	$4.35980 \cdot 10^{-18} \mathrm{~J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}$
	\hbar	$1.05457266 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}$
proton rest mass	m_{p}	$1.6726231 \cdot 10^{-27} \mathrm{~kg}$
neutron rest mass	m_{n}	$1.6749286 \cdot 10^{-27} \mathrm{~kg}$
speed of light	c	$2.99792458 \cdot 10^{8} \mathrm{~m} \mathrm{~s}{ }^{-1}$

Unit Conversions

Bohr atom: $\quad r_{n}=\frac{4 \pi \epsilon_{0} n^{2} \hbar^{2}}{Z m_{e} e^{2}}=\frac{n^{2}}{Z} a_{0} \quad v_{n}=\frac{Z e^{2}}{4 \pi \epsilon_{0} n \hbar}$

$$
E_{n}=-\frac{Z^{2} m_{e} e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} 2 n^{2} \hbar^{2}}=-\frac{Z^{2}}{2 n^{2}} E_{\mathrm{h}} \quad L_{n}=m_{e} r_{n} v_{n}=n \hbar
$$

kinetic energy operator: $\quad \hat{K}=-\frac{\hbar^{2}}{2 m} \nabla^{2}$
particle in a 1-D box: $\quad \psi(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$
Laplacian: $\quad \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$
1-electron Hamiltonian: $\quad \hat{H}=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{Z e^{2}}{\left(4 \pi \epsilon_{0}\right) r}$

$$
\begin{aligned}
& \hat{L}^{2} Y_{l}^{m_{l}}(\theta, \phi)=\hbar^{2} l(l+1) Y_{l}^{m_{l}}(\theta, \phi) \\
& \hat{L}_{z} Y_{l}^{m_{l}}(\theta, \phi)=\hbar m_{l} Y_{l}^{m_{l}}(\theta, \phi)
\end{aligned}
$$

He $1 s 2 s$ energy: $\quad E_{1}^{\mathrm{PT}}=E_{0}^{\mathrm{PT}}+\underbrace{\frac{1}{2} \iint\left(\frac{e^{2}}{r_{12}}\right) 1 s(1)^{2} 2 s(2)^{2} d \tau_{1} d \tau_{2}+\frac{1}{2} \iint\left(\frac{e^{2}}{r_{12}}\right) 1 s(2)^{2} 2 s(1)^{2} d \tau_{1} d \tau_{2}}$
Coulomb integral
$\pm \underbrace{\iint\left(\frac{e^{2}}{r_{12}}\right) 1 s(1) 1 s(2) 2 s(1) 2 s(2) d \tau_{1} d \tau_{2}}_{\text {exchange integral }}$
2-electron diatomic:

$$
\begin{aligned}
\hat{H} & =-\frac{\hbar^{2}}{2 m_{e}} \nabla(1)^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla(2)^{2}+\frac{e^{2}}{4 \pi \epsilon_{0}}\left[-\frac{Z_{\mathrm{A}}}{r_{\mathrm{A} 1}}-\frac{Z_{\mathrm{B}}}{r_{\mathrm{B} 1}}-\frac{Z_{\mathrm{A}}}{r_{\mathrm{A} 2}}-\frac{Z_{\mathrm{B}}}{r_{\mathrm{B} 2}}\right. \\
& \left.+\frac{1}{r_{12}}+\frac{Z_{\mathrm{A}} Z_{\mathrm{B}}}{R_{\mathrm{AB}}}\right]-\frac{\hbar^{2}}{2 m_{\mathrm{A}}} \nabla(A)^{2}-\frac{\hbar^{2}}{2 m_{\mathrm{B}}} \nabla(B)^{2} .
\end{aligned}
$$

binding force: $\quad F_{\text {binding }}=\frac{Z_{\mathrm{A}} e^{2}}{4 \pi \epsilon_{0} r_{\mathrm{A}}^{2}} \cos \theta_{\mathrm{A}}-\frac{Z_{\mathrm{B}} e^{2}}{4 \pi \epsilon_{0} r_{\mathrm{B}}^{2}} \cos \theta_{\mathrm{B}}-\frac{Z_{\mathrm{A}} Z_{\mathrm{B}} e^{2}}{4 \pi \epsilon_{0} R^{2}}$

