## NAME:

#### **Instructions:**

- 1. Keep this exam closed until instructed to begin. Please write your name on this page but not on any other page.
- 2. Please silence any noisy electronic devices you have.
- 3. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam if you prefer.
- 4. To receive full credit for your work, please
  - (a) show all your work, using the back of this sheet if necessary,
  - (b) specify the correct units, if any, for your final answers,
  - (c) stop writing and close your exam immediately when time is called.

#### Other notes:

- Your best scores on 4 of the 5 questions will contribute to your grade.
- Partial credit is usually available for all problems, so try each problem and do not erase any of your work.
- Each question is worth 25 points.

1. Consider a molecular dynamics simulation using a square well potential where

$$u_{\rm sq}(R) = \begin{cases} \infty & \text{if } R \le R_1 \\ -\epsilon & \text{if } R_1 < R \le R_2 \\ 0 & \text{if } R > R_2 \end{cases}.$$

To correct the motion of the particles, we need to calculate the force of any interaction between two molecules A and B.

(a) What is this force when A and B are separated by a distance  $2R_2$ ?

(b) What is this force when A and B are separated by a distance  $(R_1 + R_2)/2$ ?

(c) Use the change in potential energy to find an approximate expression for this force when the distance between A and B changes from  $R_2 + (\Delta R/2)$  to  $R_2 - (\Delta R/2)$ , where  $\Delta R \ll R_2 - R_1$ .

| 2. | . What will be the average speed ( $not$ relative speed) of $^{19}$ F <sub>2</sub> molecules in a sample where the average collision energy is 15.0 kJ mol <sup>-1</sup> ? |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    |                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                                                                                                                                                                            |  |  |  |  |  |  |  |
| 3. | If we flip a coin an even number of times $N$ , there's a chance that we will get an equal number of heads and tails.                                                      |  |  |  |  |  |  |  |
|    | (a) Find a general expression for this probability in terms of $N$ .                                                                                                       |  |  |  |  |  |  |  |
|    | (b) Find the minimum number of flips so that this probability is less than $1/3$ .                                                                                         |  |  |  |  |  |  |  |
|    |                                                                                                                                                                            |  |  |  |  |  |  |  |
|    |                                                                                                                                                                            |  |  |  |  |  |  |  |

4. A liquid is added to solvent with an initial (normalized) distribution at t=0 of  $\mathcal{P}(()Z)=Ae^{-(Z/a)^6}$ , where A=0.53896. This is a nearly constant value from Z=0 to  $Z=\pm a$ , where it rapidly drops to zero. Find an expression for the flux as a function of Z, and sketch that function on the graph below.



5. Find the value of the absorption coefficient (including units) of a  $0.100\,M$  solution of pyrene that absorbs 12% of the radiation intensity when the pathlength is  $1.00\,\mathrm{cm}$ .

## **Fundamental Constants**

| Avogadro's number   | $\mathcal{N}_A$                                          | $6.0221367 \cdot 10^{23} \text{ mol}^{-1}$                       |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------|
| Bohr radius         | $a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_0e^2}$             | $5.29177249 \cdot 10^{-11} \text{ m}$                            |
| Boltzmann constant  | $k_B$                                                    | $1.380658 \cdot 10^{-23} \text{ J K}^{-1}$                       |
| electron rest mass  | $m_e$                                                    | $9.1093897 \cdot 10^{-31} \text{ kg}$                            |
| fundamental charge  | e                                                        | $1.6021773 \cdot 10^{-19} \text{ C}$                             |
| permittivity factor | $4\pi\epsilon_0$                                         | $1.113 \cdot 10^{-10} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ |
| gas constant        | R                                                        | $8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$                     |
|                     | R                                                        | $0.08314510~{\rm L~bar~K^{-1}~mol^{-1}}$                         |
|                     | R                                                        | $0.08206~{\rm L~atm~K^{-1}~mol^{-1}}$                            |
| hartree             | $E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2 \hbar^2}$ | $4.35980 \cdot 10^{-18} \text{ J}$                               |
| Planck's constant   | h                                                        | $6.6260755 \cdot 10^{-34} \text{ J s}$                           |
|                     | $\hbar$                                                  | $1.05457266 \cdot 10^{-34} \text{ J s}$                          |
| proton rest mass    | $m_p$                                                    | $1.6726231 \cdot 10^{-27} \text{ kg}$                            |
| neutron rest mass   | $m_n$                                                    | $1.6749286 \cdot 10^{-27} \text{ kg}$                            |
| speed of light      | c                                                        | $2.99792458 \cdot 10^8 \text{ m s}^{-1}$                         |

## **Unit Conversions**

|                         | K                     | ${\rm cm}^{-1}$       | ${\rm kJ~mol^{-1}}$    | $kcal mol^{-1}$        | erg                    | kJ                     |
|-------------------------|-----------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|
| kHz =                   | $4.799 \cdot 10^{-8}$ | $3.336 \cdot 10^{-8}$ | $3.990 \cdot 10^{-10}$ | $9.537 \cdot 10^{-11}$ | $6.626 \cdot 10^{-24}$ | $6.626 \cdot 10^{-34}$ |
| MHz =                   | $4.799 \cdot 10^{-5}$ | $3.336 \cdot 10^{-5}$ | $3.990 \cdot 10^{-7}$  | $9.537 \cdot 10^{-8}$  | $6.626 \cdot 10^{-21}$ | $6.626 \cdot 10^{-31}$ |
| GHz =                   | $4.799 \cdot 10^{-2}$ | $3.336 \cdot 10^{-2}$ | $3.990 \cdot 10^{-4}$  | $9.537 \cdot 10^{-5}$  | $6.626 \cdot 10^{-18}$ | $6.626 \cdot 10^{-28}$ |
| K =                     | 1                     | 0.6950                | $8.314 \cdot 10^{-3}$  | $1.987 \cdot 10^{-3}$  | $1.381 \cdot 10^{-16}$ | $1.381 \cdot 10^{-26}$ |
| $cm^{-1} =$             | 1.4388                | 1                     | $1.196 \cdot 10^{-2}$  | $2.859 \cdot 10^{-3}$  | $1.986 \cdot 10^{-16}$ | $1.986 \cdot 10^{-26}$ |
| $kJ \text{ mol}^{-1} =$ | $1.203\cdot 10^2$     | 83.59                 | 1                      | 0.2390                 | $1.661 \cdot 10^{-14}$ | $1.661 \cdot 10^{-24}$ |
| $kcal mol^{-1} =$       | $5.032\cdot 10^2$     | $3.498\cdot 10^2$     | 4.184                  | 1                      | $6.948 \cdot 10^{-14}$ | $6.948 \cdot 10^{-24}$ |
| eV =                    | $1.160\cdot 10^4$     | $8.066\cdot10^3$      | 96.49                  | 23.06                  | $1.602 \cdot 10^{-12}$ | $1.602 \cdot 10^{-22}$ |
| hartree =               | $3.158\cdot 10^5$     | $2.195\cdot 10^5$     | $2.625\cdot 10^3$      | $6.275\cdot 10^2$      | $4.360 \cdot 10^{-11}$ | $4.360 \cdot 10^{-21}$ |
| erg =                   | $7.243 \cdot 10^{15}$ | $5.034 \cdot 10^{15}$ | $6.022\cdot10^{13}$    | $1.439\cdot10^{13}$    | 1                      | $10^{-10}$             |
| J =                     | $7.243 \cdot 10^{22}$ | $5.034 \cdot 10^{22}$ | $6.022 \cdot 10^{20}$  | $1.439 \cdot 10^{20}$  | $10^{7}$               | $10^{-3}$              |
| $dm^3 bar =$            | $7.243 \cdot 10^{24}$ | $5.034 \cdot 10^{24}$ | $6.022 \cdot 10^{22}$  | $1.439 \cdot 10^{22}$  | $1.000 \cdot 10^{9}$   | 0.1000                 |
| kJ =                    | $7.243 \cdot 10^{25}$ | $5.034 \cdot 10^{25}$ | $6.022\cdot10^{23}$    | $1.439\cdot10^{23}$    | $10^{10}$              | 1                      |

# Some equations

Einstein equation 
$$C_{Vm} = \frac{3N_A\omega_E^2 e^{\omega_E/(k_BT)}}{k_BT^2(e^{\omega_E/(k_BT)}-1)^2}$$
 Debye theory 
$$C_{Vm} = \frac{9N_Ak_B^4T^3}{\omega_D^3} \int_0^{\omega_D/(k_BT)} \frac{x^4 e^x dx}{(e^x-1)^2}$$
 blackbody 
$$\rho(\nu) d\nu = \frac{8\pi h \nu^3 d\nu}{c^3(e^{h\nu/(k_BT)}-1)}$$
 speeds 
$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$$
 
$$v_{rms} = \sqrt{\frac{3k_BT}{m}}$$
 
$$v_P = \sqrt{\frac{2k_BT}{m}}$$
 
$$\langle v_{AA} \rangle = 4\sqrt{\frac{k_BT}{\pi m}}$$
 collisions 
$$\langle E_{AB} \rangle = \frac{3k_BT}{2}$$
 
$$\gamma = \rho \sigma \langle v_{AA} \rangle$$
 
$$\lambda = \frac{1}{\rho \sigma}$$
 random walk 
$$P(k) = \frac{N!}{2^N \frac{N+k!}{2}!} \frac{N-k!}{2}$$
 diffusion 
$$P(x) = \frac{1}{\sqrt{2\pi}s} e^{-r^2/(2s^2)}$$
 
$$P(r) = \frac{4\pi}{\sqrt{8\pi^3}s^3} e^{-r^2/(4Dt)} r^2$$
 
$$P(r,t) = \frac{\pi}{2(\pi Dt)^{3/2}} e^{-r^2/(4Dt)} r^2$$
 
$$D \approx \frac{\lambda^2 \gamma}{2} = \frac{\langle v_{AA} \rangle}{2\rho \sigma}$$
 Fick's laws 
$$\log_{10} \frac{I}{I_0} = -\epsilon cl$$
 Beer's laws 
$$\log_{10} \frac{I}{I_0} = -\epsilon cl$$