### NAME:

### **Instructions:**

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
  - (a) show all your work, using only the exam papers, including the back of this sheet if necessary;
  - (b) specify the correct units, if any, for your final answers;
  - (c) use an appropriate number of significant digits for final numerical answers;
  - (d) stop writing and close your exam immediately when time is called.

### Other notes:

- The first page portion of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

# 1. **40** points.

(a) The diffusion constant of a lysozyme in water is  $1.11 \cdot 10^{-6} \,\mathrm{cm^2 \, s^{-1}}$ , and the diffusion constant of propane in water at the same temperature is  $1.21 \cdot 10^{-5} \,\mathrm{cm^2 \, s^{-1}}$ . If we let propane diffuse in water for  $3.60 \cdot 10^3 \,\mathrm{s}$  and measure the rms diffusion distance, how long would it take the lysozyme to reach the same rms diffusion distance?

- (b) For the isobaric heating of an ideal gas, indicate whether each of the following is positive ("+"), negative ("-"), or zero ("0"):
  - i.  $\Delta E$
  - ii. q
  - iii.  $\Delta P$
  - iv.  $\Delta T$
  - v.  $\Delta V$
- (c) Write a Maxwell relation based on taking the second derivative of E with respect to V and n.

- (d) According to the Einstein equation for heat capacity, what is the numerical value of the heat capacity of a crystal of quartz at
  - i. 1000 K (assume the high temperature limit)
  - ii. 0 K.

| 2. | The Fe(III) - ferrozine complex has an extinction coefficient or molar absorptivity of $2.8 \cdot 10^4  \mathrm{L}  \mathrm{mol}^{-1}  \mathrm{cm}^{-1}$ .                                     |    |  |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
|    | (a) What concentration would give an absorbance of 0.01 in a 1.0 cm pathlengt cuvette?                                                                                                         | h  |  |  |  |  |  |  |
|    | (b) At this concentration, what percent of the incident light is absorbed?                                                                                                                     |    |  |  |  |  |  |  |
|    |                                                                                                                                                                                                |    |  |  |  |  |  |  |
| 3. | The heat capacity $C_{Pm}$ for 1,2-dibromoethane gas is 96.8 J K <sup>-1</sup> mol <sup>-1</sup> at 383 K an 1.00 bar.                                                                         | d  |  |  |  |  |  |  |
|    | <ul> <li>(a) As we heat the substance from 382 K to 384 K, how much heat (in J mol<sup>-1</sup> is transferred into each of these three degrees of freedom?</li> <li>i. translation</li> </ul> | •) |  |  |  |  |  |  |
|    | ii. rotation                                                                                                                                                                                   |    |  |  |  |  |  |  |
|    | iii. vibration                                                                                                                                                                                 |    |  |  |  |  |  |  |
|    | (b) Based on your results, roughly how many vibrational modes appear to be absorbing energy at this temperature?                                                                               | e  |  |  |  |  |  |  |

4. Find what thermodynamic parameters are represented by X, Y, and Z in the equation

$$\kappa_S = \frac{C_V}{VT} \left( \frac{\partial T}{\partial X} \right)_Y \left( \frac{\partial T}{\partial X} \right)_Z.$$

## **Fundamental Constants**

| Avogadro's number   | $\mathcal{N}_A$                                          | $6.0221367 \cdot 10^{23} \text{ mol}^{-1}$                                   |
|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------|
| Bohr radius         | $a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2}$            | $5.29177249 \cdot 10^{-11} \text{ m}$                                        |
| Boltzmann constant  | $k_{ m B}$                                               | $1.380658 \cdot 10^{-23} \text{ J K}^{-1} = 0.6950 \text{ cm}^{-1}/\text{K}$ |
| electron rest mass  | $m_e$                                                    | $9.1093897 \cdot 10^{-31} \text{ kg}$                                        |
| fundamental charge  | e                                                        | $1.6021773 \cdot 10^{-19} \text{ C}$                                         |
| permittivity factor | $4\pi\epsilon_0$                                         | $1.113 \cdot 10^{-10} \mathrm{C^2  J^{-1}  m^{-1}}$                          |
| gas constant        | R                                                        | $8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$                                 |
|                     | R                                                        | $0.08314510 \text{ L bar K}^{-1} \text{ mol}^{-1}$                           |
|                     | R                                                        | $0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$                              |
| hartree             | $E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2 \hbar^2}$ | $4.35980 \cdot 10^{-18} \text{ J}$                                           |
| Planck's constant   | h                                                        | $6.6260755 \cdot 10^{-34} \text{ J s}$                                       |
|                     | $\hbar$                                                  | $1.05457266 \cdot 10^{-34} \text{ J s}$                                      |
| proton rest mass    | $m_p$                                                    | $1.6726231 \cdot 10^{-27} \text{ kg}$                                        |
| neutron rest mass   | $m_n$                                                    | $1.6749286 \cdot 10^{-27} \text{ kg}$                                        |
| speed of light      | c                                                        | $2.99792458 \cdot 10^8 \text{ m s}^{-1}$                                     |

## **Unit Conversions**

|                         | K                     | ${\rm cm}^{-1}$       | ${\rm kJ~mol^{-1}}$    | $kcal mol^{-1}$        | $\operatorname{erg}$   | kJ                     |
|-------------------------|-----------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|
| kHz =                   | $4.799 \cdot 10^{-8}$ | $3.336 \cdot 10^{-8}$ | $3.990 \cdot 10^{-10}$ | $9.537 \cdot 10^{-11}$ | $6.626 \cdot 10^{-24}$ | $6.626 \cdot 10^{-34}$ |
| MHz =                   | $4.799 \cdot 10^{-5}$ | $3.336 \cdot 10^{-5}$ | $3.990 \cdot 10^{-7}$  | $9.537 \cdot 10^{-8}$  | $6.626 \cdot 10^{-21}$ | $6.626 \cdot 10^{-31}$ |
| GHz =                   | $4.799 \cdot 10^{-2}$ | $3.336 \cdot 10^{-2}$ | $3.990 \cdot 10^{-4}$  | $9.537 \cdot 10^{-5}$  | $6.626 \cdot 10^{-18}$ | $6.626 \cdot 10^{-28}$ |
| K =                     | 1                     | 0.6950                | $8.314 \cdot 10^{-3}$  | $1.987\cdot10^{-3}$    | $1.381 \cdot 10^{-16}$ | $1.381 \cdot 10^{-26}$ |
| $cm^{-1} =$             | 1.4388                | 1                     | $1.196 \cdot 10^{-2}$  | $2.859\cdot10^{-3}$    | $1.986 \cdot 10^{-16}$ | $1.986 \cdot 10^{-26}$ |
| $kJ \text{ mol}^{-1} =$ | $1.203 \cdot 10^2$    | 83.59                 | 1                      | 0.2390                 | $1.661 \cdot 10^{-14}$ | $1.661 \cdot 10^{-24}$ |
| $kcal mol^{-1} =$       | $5.032 \cdot 10^2$    | $3.498\cdot 10^2$     | 4.184                  | 1                      | $6.948 \cdot 10^{-14}$ | $6.948 \cdot 10^{-24}$ |
| eV =                    | $1.160 \cdot 10^4$    | $8.066\cdot10^3$      | 96.49                  | 23.06                  | $1.602 \cdot 10^{-12}$ | $1.602 \cdot 10^{-22}$ |
| hartree =               | $3.158 \cdot 10^{5}$  | $2.195\cdot 10^5$     | $2.625\cdot 10^3$      | $6.275\cdot 10^2$      | $4.360 \cdot 10^{-11}$ | $4.360 \cdot 10^{-21}$ |
| erg =                   | $7.243 \cdot 10^{15}$ | $5.034 \cdot 10^{15}$ | $6.022 \cdot 10^{13}$  | $1.439 \cdot 10^{13}$  | 1                      | $10^{-10}$             |
| J =                     | $7.243 \cdot 10^{22}$ | $5.034 \cdot 10^{22}$ | $6.022 \cdot 10^{20}$  | $1.439 \cdot 10^{20}$  | $10^{7}$               | $10^{-3}$              |
| $dm^3 bar =$            | $7.243 \cdot 10^{24}$ | $5.034 \cdot 10^{24}$ | $6.022 \cdot 10^{22}$  | $1.439 \cdot 10^{22}$  | $1.000 \cdot 10^9$     | 0.1000                 |
| kJ =                    | $7.243 \cdot 10^{25}$ | $5.034 \cdot 10^{25}$ | $6.022 \cdot 10^{23}$  | $1.439 \cdot 10^{23}$  | $10^{10}$              | 1                      |

entropy 
$$S_{\text{Boltzmann}} = k_{\text{B}} \ln \Omega$$
  $S_{\text{Gibbs}} = -Nk_{\text{B}} \sum_{i} \mathcal{P}(i) \ln \mathcal{P}(i)$  partition func.s  $q(T) = \sum_{\epsilon} g(\epsilon)e^{-\epsilon/(k_{\text{B}}T)} \quad q_{\text{rot}} \approx \frac{k_{\text{B}}T}{B} \quad q_{\text{vib}} \approx \frac{1}{1 - e^{-\omega x/(k_{\text{B}}T)}}$   $q_{\text{trans}}(T, V) = q_K'q_U' = \left(\frac{2\pi mk_{\text{B}}T}{h^2}\right)^{3/2}V$  (ideal gas) collisions  $v_{\text{rms}} = \sqrt{\frac{3k_{\text{B}}T}{m}} \quad \langle v \rangle = \sqrt{\frac{8k_{\text{B}}T}{\pi m}} \quad \langle v_{\text{AB}} \rangle = \sqrt{\frac{8k_{\text{B}}T}{\pi \mu}}$   $\gamma = \rho \sigma \langle v_{AA} \rangle \quad \lambda = \frac{1}{\sqrt{2}\rho \sigma} \quad \rho = \frac{N}{V} = \frac{PNA}{RT}$  thermo derivatives  $dE = TdS - PdV + \mu_1 dn_1 + \dots \quad dH = TdS + VdP + \mu_1 dn_1 + \dots$   $dF = -SdT - PdV + \mu_1 dn_1 + \dots \quad dG = -SdT + VdP + \mu_1 dn_1 + \dots$  isobaric heating:  $\Delta S = nC_{\text{Pm}} \ln \left(\frac{V_f}{T_i}\right)$   $w_{\text{trr}} = -P_{\text{min}} \Delta V \quad \Delta S = nR \ln \left(\frac{V_f}{V_i}\right)$  adiabatic exp:  $w_{\text{rev}} = -nRT \ln \left(\frac{V_2}{V_1}\right) \quad w_{\text{trr}} = -P_{\text{min}} \Delta V \quad \Delta S = nR \ln \left(\frac{V_f}{V_i}\right)$  adiabatic exp:  $w_{\text{rev}} = C_V \Delta T \quad \frac{V_2}{V_1} = \left(\frac{T_2}{T_1}\right)^{-C_{V,m}/R} = \left(\frac{P_2}{P_1}\right)^{-C_{V,m}/C_{P,m}}$  Sackur-Tetrode:  $S_m = R\left\{\frac{5}{2} + \ln \left[\left(\frac{2\pi mk_{\text{B}}T}{h^2}\right)^{3/2} \frac{RT}{NAP}\right]\right\}$  Clausius/Clapeyron:  $\frac{dP}{dT} = \frac{\Delta_{\phi}H}{T\Delta_{\phi}V} \quad \ln P(\text{bar}) = \frac{\Delta_{\text{vap}}H}{R} \left[\frac{1}{T_b} - \frac{1}{T}\right]$  Gibbs phase:  $d = k - p + 2$  Raoult's law:  $P_{\text{A}} = k_{\text{A}} X_{\text{A}}$  Henry's law:  $P_{\text{B}} = k_{\text{A}} X_{\text{A}}$   $k_{\text{A}} = \frac{k_{\text{B}}T^*_{\text{F}}X_{\text{B}}}{\Delta_{\text{fus}}H} \quad \Pi = RT[\text{B}]$  reactions:  $\Delta_{\text{Em}}G = \Delta_{\text{Em}}G^{\phi} + RT \ln \Xi \ln K_{\text{eq}}(T) = -\frac{\Delta_{\text{Em}}G^{\phi}}{RT} = -\frac{\Delta_{\text{Em}}H^{\phi}}{RT} + \frac{\Delta_{\text{Em}}S^{\phi}}{R}$  rate constants:  $k_{\text{SCT}} = \rho_{\text{AB}} \left(\frac{8k_{\text{B}}T}{RT}\right)^{1/2} e^{-E_{\text{e}/(RT)}} N_{\text{A}} \quad k_{\text{TST}} = \frac{k_{\text{B}}T}{Ch} e^{\Delta S^{\dagger}/R} e^{-\Delta B^{\dagger}/(RT)}$