
Chemistry 410B Exam 4 Spring 2012

Solutions

1. 40 points.

(a) Predict the standard molar entropy of I(g) at 573K and 1.00 bar. Solution: We

want the mass of one iodine atom, 126.904 amu, and let’s use SI units for pressure

and mass:
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2π(126.904 amu)(1.661 · 10−27 kg amu−1)(1.381 · 10−23 JK−1)(573K)

(6.626 · 10−34 J s)2
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(8.3145 JK−1 mol−1)(573K)
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= R
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[

2.92 · 108
]

}

= 22.0R

= 183 JK−1 mol−1.

(b) Calculate the entropy change when we heat calcium chloride from 298K to 323K,

if the heat capacity remains a constant 72.59 JK−1 mol−1. Solution:

∆S = CP ln

(

T2

T1

)

= (72.59 JK−1 mol−1) ln

(

323

298

)

= 5.85 JK−1 mol−1.

(c) The container shown below separates an ideal gas into two compartments with a

movable, thermally conducting wall between them. The conditions in each com-

partment are labeled.
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500 K
2.00 mol
10.0 L
8.3 bar

600 K
4.00 mol
20.0 L
10.0 bar

Solution: The pressure is initially greater on the right, so the wall will move to the

left to equalize the forces, at which point the pressures become equal. At the same

time, heat will flow from the higher temperature right side to the left across the

wall until the temperatures are equal. The correct choices are ii, iv, vi, and vii.

2. Repeat the reversible, isothermal expansion of 1.00mol of an ideal gas from 2.48 L at

10.00 bar and 298K to a final pressure of 1.00 bar, but this time set the final pressure P2

to 0.100 bar. Calculate the following parameters. Solution:

(a) V2 = nRT/P2 = (1.00mol)(0.083145 bar LK−1 mol−1)(298K)/(0.100 bar) = 248L.

(b) ∆E = 0 because the energy of an ideal gas depends only on the temperature and

number of moles, and here neither value changes.

(c) w = −nRT ln(V2/V1) = −(1.00mol)(8.3145 JK−1 mol−1)(298K) ln(248/2.48) =

−11.4 kJ.
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(d) ∆S = nR ln(V2/V1) = (1.00mol)(8.3145 JK−1 mol−1) ln(248/2.48) = 38.3 JK−1.

(e) ∆F = ∆(E − TS) = ∆E − T∆S = 0− (298K)(38.3 J K−1) = −11.4 kJ.

3. A sample of I2 gas (ωe = 214.5 cm−1, Be = 0.0559 cm−1) initially has distinct tempera-

tures for vibration Tvib = 653K, rotation Trot = 437K, and translation Ttrans = 298K.

We isolate the sample and wait until the temperatures are equal for all degrees of free-

dom. What is the final temperature? Solution: The total energy of the isolated sample

is conserved, but the second law will distribute that energy among the different degrees

of freedom to equalize the temperatures, because this will maximize the entropy of the

sample. We need to know how the energy and temperature are related in ewach de-

gree of freedom, therefore. The equipartition principle provides a good starting point,

because it should apply as long as the thermal energy kBT is signifiacntly greater than

the excitation energies of each degree of freedom. We can assume that to be true for

translations in any macroscopic system. To check if this applies to the rotational and

vibrational energies, we compare the values of kBT (304 cm−1and 454 cm−1, respectively)

to Be and ωe. The condition kBT ≫ Be is satisfied, and kBT > ωe but only by about

50%. Assuming equipartition holds, we can calculate the energy in each degree of free-

dom, sum these to calculate the total energy in the sample, and then divide that by the

total number of equipartition degrees of freedom to estimate the final temperature. For a

diatomic, Nep,trans = 3, Nep,rot = 2, and Nep,vib = 2. Because we don’t know the amount

of material, the following are calculated as quantities per mole:

Etrans =
3

2
RT =

3

2
(8.3145 JK−1 mol−1)(298K) = 3.717 kJmol−1

Erot = RT = (8.3145 JK−1 mol−1)(437K) = 3.633 kJmol−1

Evib = RT = (8.3145 JK−1 mol−1)(653K) = 5.429 kJmol−1

Etot = Etrans + Erot + Evib = 12.779 kJmol−1 = Nep

(

1

2
RTf

)

Nep = Nep,trans +Nep,rot +Nep,vib = 7

Tf =
Etot

7R/2
=

12779 Jmol−1

7(8.3145 JK−1 mol−1)/2
= 479K.

Because the thermal energy in vibration is not much larger than ωe, a more accurate

answer would be obtained by using the exact expression for the average energy of a

harmonic oscillator: but in fact this yields an answer only slightly different: 437K.

4. Plot T vs S of the three expansions described in the text, starting from the point

(T1, S1). Solution: (a) For the reversible isothermal process, T is constant, and ∆S =

nRln(V2/V1) = +19.1 JK−1 mol−1. (b) For the irreversible isothermal process, the initial

and final states are the same as for the reversible isothermal expansion, but the middle

of the curve is not the same. The heat flow q is the area under this curve, because

q =
∫

dq =
∫

T dS. As with the reversible case, ∆E = 0 because n and T are the

same at the beginning and end of the expansion. From the first law of thermodynamics,

that result requires that q = −w. However, we know that |wirr| < |wrev|, so therefore
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|qirr| < |qrev|. In these specific cases, wrev = −5.71 kJ and wirr = −2.33 kJ. The curve

must therefore have the same endpoints but an area of 2.33 kJ, 41% the area under the

curve for (a). (c) For the reversible adiabatic process, S is constant, and T2 = 119K.

1S

1S +19.1 J/K/mol

T

298 K

119 K

S

(a)

(b)

(c)
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