NAME:

Instructions:

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
 - (a) show all your work, using only the exam papers, including the back of this sheet if necessary;
 - (b) specify the correct units, if any, for your final answers;
 - (c) use an appropriate number of significant digits for final numerical answers;
 - (d) stop writing and close your exam immediately when time is called.

Other notes:

- The first page portion of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

1. **40** points.

(a) For each of the following, write a \mathbf{single} thermodynamic parameter equal to the expression:

i. $\frac{nRT}{V}$ for ideal gas

- ii. $\left(\frac{\partial H}{\partial P}\right)_{S,n}$
- iii. $\left(\frac{\partial H}{\partial T}\right)_{P,n}$
- iv. F + TS
- (b) Rank the following gas-phase compounds (by letter) in order of **increasing** molar heat capacity C_{Pm} (from lowest value on the left, to highest value on the right). (A) C_3H_8 (B) HCCH (C) C_3H_7I (D) H_2CO
- (c) A leak in a container allows an ideal gas to escape our sample irreversibly and isothermally at constant pressure. For each of the following parameters, **circle** any that stay unchanged (for the sample) during this process, put a **square** around any that decrease, and **underline** any that increase.

(d) If $\Omega = AV^N$, find $\Delta S = S(V_2) - S(V_1)$ in terms of R when $V_2 = 2V_1$ and $N = \mathcal{N}_A$.

2. (a) Find an expression for $\left(\frac{\partial P}{\partial T}\right)_{F,n}$ of any material in terms of any of α , C_P , C_V , or the compressibilities κ , where

$$\kappa_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$
 $\kappa_S \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S.$

(b) Evaluate this expression when the material is an ideal gas.

3. Start from $0.100\,\mathrm{mol}$ of a monatomic ideal gas at a volume of $5.00\,\mathrm{L}$ at $298\,\mathrm{K}$. Find the final pressure if we change the volume adiabatically to bring the gas to a final temperature of $410\,\mathrm{K}$.

4. The heat capacity gives the heat transfer per unit temperature change, $\partial q/\partial T$, and we define these at constant V or at constant P. In the same way, we can define "work capacities" at constant T or S, B_T and B_S , by

$$B_T = \left(\frac{\partial w}{\partial P}\right)_T \qquad B_S = \left(\frac{\partial w}{\partial P}\right)_S.$$

Find an expression for B_T in terms of B_S , replacing any remaining partial derivatives by common thermodynamic parameters.

equipartition
$$E = \frac{1}{2}N_{\rm ep}Nk_BT = \frac{1}{2}N_{\rm ep}nRT$$
 virial/van der Waals
$$P = RT\left[V_m + B_2(T)V_m^2\right] \qquad RT = \left(P + \frac{a}{V_m^2}\right)(V_m - b)$$

$$B_2(T) = -N_A \frac{1}{2}\mathcal{I}(\beta) \equiv -2\pi N_A \int_0^{V^{1/3}} (e^{-u(R)/(k_BT)} - 1)R^2 dR$$

$$a \approx \frac{16\pi N_A^2 \epsilon R_{\rm LJ}^3}{9} \qquad b \approx \frac{2N_A \pi R_{\rm LJ}^3}{3}$$
 thermo derivatives
$$dE = TdS - PdV + \mu_1 dn_1 + \dots \qquad dH = TdS + VdP + \mu_1 dn_1 + \dots$$

$$dF = -SdT - PdV + \mu_1 dn_1 + \dots \qquad dG = -SdT + VdP + \mu_1 dn_1 + \dots$$
 Maxwell relations
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V \quad \left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial V}{\partial T}\right)_V \quad \left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$$

$$\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_P \qquad \kappa_x \equiv -\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_S$$

$$C_P = C_V + V\alpha \left[\left(\frac{\partial E}{\partial V}\right)_T + P\right]$$
 isothermal exp:
$$w_{\rm rev} = -nRT \ln\left(\frac{V_2}{V_1}\right) \qquad w_{\rm irr} = -P_{\rm ex} \Delta V$$
 rev. adiabatic exp:
$$w_{\rm rev} = C_V \Delta T \qquad V_2 = V_1 \left(\frac{P_2}{P_1}\right)^{-C_V/(C_V + nR)}$$
 Joule-Thompson:
$$\left(\frac{\partial T}{\partial P}\right)_R = \frac{\frac{2a}{RT} - b}{C_{Pm}}$$

Partial derivative identities

reciprocal rule
$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial x}\right)_z = 1$$

slope rule $dz(x,y) = \left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy$
cyclic rule $\left(\frac{\partial x}{\partial y}\right)_z = -\left(\frac{\partial x}{\partial z}\right)_y \left(\frac{\partial z}{\partial y}\right)_x$
chain rule $\left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial x}{\partial w}\right)_z \left(\frac{\partial w}{\partial y}\right)_z$
 $\left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial x}{\partial y}\right)_w + \left(\frac{\partial x}{\partial w}\right)_y \left(\frac{\partial w}{\partial y}\right)_z$

Fundamental Constants

Avogadro's number	\mathcal{N}_A	$6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e\epsilon^2}$	$5.29177249 \cdot 10^{-11} \text{ m}$
Boltzmann constant	k_B	$1.380658 \cdot 10^{-23} \text{ J K}^{-1}$
electron rest mass	m_e	$9.1093897 \cdot 10^{-31} \text{ kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \text{ C}$
permittivity factor	$4\pi\epsilon_0$	$1.113 \cdot 10^{-10} \mathrm{C^2} \mathrm{J^{-1}} \mathrm{m^{-1}}$
gas constant	R	$8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$
	R	$0.08314510 \text{ L bar K}^{-1} \text{ mol}^{-1}$
	R	$0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$
hartree	$E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2\hbar^2}$	$4.35980 \cdot 10^{-18} \text{ J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \text{ J s}$
	\hbar	$1.05457266 \cdot 10^{-34} \text{ J s}$
proton rest mass	m_p	$1.6726231 \cdot 10^{-27} \text{ kg}$
neutron rest mass	m_n	$1.6749286 \cdot 10^{-27} \text{ kg}$
speed of light	c	$2.99792458 \cdot 10^8 \text{ m s}^{-1}$

Unit Conversions

	K	cm^{-1}	${ m kJ~mol^{-1}}$	$kcal mol^{-1}$	erg	kJ
kHz =	$4.799 \cdot 10^{-8}$	$3.336 \cdot 10^{-8}$	$3.990 \cdot 10^{-10}$	$9.537 \cdot 10^{-11}$	$6.626 \cdot 10^{-24}$	$6.626 \cdot 10^{-34}$
MHz =	$4.799 \cdot 10^{-5}$	$3.336 \cdot 10^{-5}$	$3.990 \cdot 10^{-7}$	$9.537\cdot10^{-8}$	$6.626 \cdot 10^{-21}$	$6.626 \cdot 10^{-31}$
GHz =	$4.799 \cdot 10^{-2}$	$3.336 \cdot 10^{-2}$	$3.990\cdot10^{-4}$	$9.537\cdot10^{-5}$	$6.626 \cdot 10^{-18}$	$6.626 \cdot 10^{-28}$
K =	1	0.6950	$8.314 \cdot 10^{-3}$	$1.987 \cdot 10^{-3}$	$1.381 \cdot 10^{-16}$	$1.381 \cdot 10^{-26}$
$cm^{-1} =$	1.4388	1	$1.196\cdot10^{-2}$	$2.859\cdot10^{-3}$	$1.986 \cdot 10^{-16}$	$1.986 \cdot 10^{-26}$
$kJ \text{ mol}^{-1} =$	$1.203 \cdot 10^2$	83.59	1	0.2390	$1.661 \cdot 10^{-14}$	$1.661 \cdot 10^{-24}$
$kcal mol^{-1} =$	$5.032 \cdot 10^2$	$3.498\cdot 10^2$	4.184	1	$6.948 \cdot 10^{-14}$	$6.948 \cdot 10^{-24}$
eV =	$1.160 \cdot 10^4$	$8.066\cdot10^3$	96.49	23.06	$1.602 \cdot 10^{-12}$	$1.602 \cdot 10^{-22}$
hartree =	$3.158 \cdot 10^{5}$	$2.195\cdot 10^5$	$2.625\cdot 10^3$	$6.275\cdot 10^2$	$4.360 \cdot 10^{-11}$	$4.360 \cdot 10^{-21}$
erg =	$7.243 \cdot 10^{15}$	$5.034 \cdot 10^{15}$	$6.022\cdot10^{13}$	$1.439\cdot10^{13}$	1	10^{-10}
J =	$7.243 \cdot 10^{22}$	$5.034 \cdot 10^{22}$	$6.022 \cdot 10^{20}$	$1.439 \cdot 10^{20}$	10^{7}	10^{-3}
$dm^3 bar =$	$7.243 \cdot 10^{24}$	$5.034 \cdot 10^{24}$	$6.022 \cdot 10^{22}$	$1.439 \cdot 10^{22}$	$1.000 \cdot 10^{9}$	0.1000
kJ =	$7.243 \cdot 10^{25}$	$5.034 \cdot 10^{25}$	$6.022 \cdot 10^{23}$	$1.439 \cdot 10^{23}$	10^{10}	1

 10^{-10} m 1 Å =distance $1.66054 \cdot 10^{-27} \text{ kg}$ 1 amu =mass $1 \text{ kg m}^2 \text{ s}^{-2}$ $=10^7 \text{ erg}$ 1 J =energy 1 kg m s^{-2} $=10^5 \mathrm{\ dyn}$ $\quad \mathbf{force} \quad$ 1 N = $1 \text{ A s} = 2.9979 \cdot 10^9 \text{ esu}$ electrostatic charge 1 C = $=1\cdot 10^{-18}~{\rm esu~cm}$ $3.3357 \cdot 10^{-30} \text{ C m}$ 1 D = $1 \text{ kg s}^{-2} \text{ A}^{-1}$ magnetic field strength 1 T = $= 10^4 \text{ gauss}$ $= 1 \text{ kg m}^{-1} \text{ s}^{-2}$ $1~\mathrm{N~m^{-2}}$ 1 Pa =pressure $1~{\rm bar} =$ $10^5 \text{ Pa} = 0.98692 \text{ atm}$