Exam 5 Solutions

1. 40 points.

- (a) Write the complete MO configuration that you would expect for B_2 , if you follow the line for N_2 in the schematic homonuclear diatomics correlation diagram (Fig. 6.2). **Solution:** B_2 has 10 electrons, and we can put two to an orbital: $1\sigma_g^2 1\sigma_u^2 2\sigma_g^2 2\sigma_u^2 1\pi_u^2$.
- (b) Write the term symbol for the BH₃⁺ ion, with MO configuration $1a'_{1}{}^{2}2a'_{1}{}^{2}1e'^{3}$. Solution: S = 1/2 and the symmetry of e'^{3} is the same as e', so 2E'.
- (c) Circle the molecule that you would expect to have the **lowest** vibrational constant ω_e : **Solution:** All three molecules are made from atoms with the same valence, so will have similar bonding. In that case, the more massive atoms will give the higher μ and lower k: MgO CaO CaS
- (d) Circle the molecule that you would expect to have the **lowest** vibrational constant for the CC stretch: **Solution:** In this case, the reduced masses are similar but the k values increase from single- to double- to triple-bond: H_3CCH_3 H_2CCH_2 HCCH
- (e) For the v = 3 state of a simple harmonic oscillator:
 - i. Write the wavefunction in terms of the unitless coordinate y. Solution: From Table 7.1:

$$\psi_{v=3} = A_3 H_3 e^{-y^2/2} = \left(\frac{k\mu}{\hbar^2}\right)^{1/8} \left(\frac{1}{48\sqrt{\pi}}\right)^{1/2} (8y^3 - 12y) e^{-y^2/2}.$$

ii. How many nodes does this wavefunction have? Solution: 3

- (f) How many vibrational modes are there in the simplest amino acid, glycine (NH_2CH_2COOH) ? Solution: Non-linear with N = 10 atoms, so 3N 6 = 24.
- 2. Ground state acetylene is linear, but its lowest excited state is a triplet state with C_{2h} symmetry. Give the representations in the C_{2h} limit that correlate to the MO's listed below for the linear molecule.

$$H - C \equiv C - H$$
 $H : C = C :$

Solution: From the linear to the bent structure, the symmetry elements of C_{2h} are conserved. One of the $\hat{\sigma}_v$ planes in $D_{\infty h}$ becomes the $\hat{\sigma}_h$ plane in C_{2h} , One of the \hat{C}_2 axes in $D_{\infty h}$ (perpendicular to the internuclear axis) becomes the principal \hat{C}_2 axis in C_{2h} , and \hat{I} is unchanged. Therefore, we can just keep track of the symmetry under \hat{C}_2 and \hat{I} to find the correlating representation in C_{2h} :

group	$\Gamma(D_{\infty h})$	\hat{C}_2	\hat{I}	$\Gamma(C_{2h})$
C-H	σ_{g}	1	1	a_g
С—Н	σ_u	-1	-1	b_u
C≡C	σ_{g}	1	1	a_g
C≡C	π_u in – plane	-1	-1	b_u
	π_u out – of – plane	1	-1	a_u

3. Give the symmetry representation for each of the vibrational modes below, and indicate whether each mode is IR-active or IR-inactive (in other words, can the mode be excited by an allowed electric dipole transition).

Solution:

4. The $v = 0 \rightarrow 1$ transition in CH⁺ is measured at 2046.3 cm⁻¹. If the force constant is 259.0 N m⁻¹, calculate the anharmonicity $\omega_e x_e$. Solution: The transition energy depends on ω_e and $\omega_e x_e$. Therefore, to get $\omega_e x_e$ from the transition energy, we need to know the value of ω_e . We can get ω_e from μ and k, so we're all set:

$$\mu = \frac{(1.008)(12.00)}{1.008 + 12.00} = 0.9299 \text{ amu}$$

$$\omega_e (\text{cm}^{-1}) = 130.28 \sqrt{\frac{k (\text{N} \text{m}^{-1})}{\mu (\text{amu})}} = 130.28 \sqrt{\frac{259.0 \text{ N} \text{m}^{-1}}{0.9299 \text{ amu}}} = 2174.3 \text{ cm}^{-1}$$

$$\Delta E = \omega_e \left[(v' + \frac{1}{2}) - (v'' + \frac{1}{2}) \right] - \omega_e x_e \left[(v' + \frac{1}{2})^2 - (v'' + \frac{1}{2})^2 \right]$$

$$= \omega_e \left[(3/2) - (1/2) \right] - \omega_e x_e \left[(9/4) - (1/4) \right] = \omega_e - 2\omega_e x_e = 2046.3 \text{ cm}^{-1}$$

$$\omega_e x_e = \frac{\omega_e - \Delta E}{2} = \frac{(2174.3 \text{ cm}^{-1}) - (2046.3 \text{ cm}^{-1})}{2} = \boxed{64.0 \text{ cm}^{-1}}.$$