1. One of the symmetry molecular orbitals for the $\mathrm{C}-\mathrm{H}$ bonds in dichloroethene is drawn below as the molecle isomerizes from trans to cis. Fill in the blanks below for the point group of the molecule and the representation of the orbital at these three geometries. Let the two carbons lie along the x axis in each case.

2. For the molecular ion Be_{2}^{+}:
(a) write the MO configuration and term symbol for the ground electronic state X; Solution: $1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}, X^{2} \Sigma_{u}^{+}$.
(b) form an excited state A by promoting the highest energy electron to the lowest energy unoccupied MO, and determine if the transition $X \rightarrow A$ is allowed or forbidden by electric dipole selection rules. Solution: The A excited state will be $1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 3 \sigma_{g}, A^{2} \Sigma_{g}^{+}$. The transition $X \rightarrow A$ is allowed because $\Sigma_{u}^{+} \otimes \Sigma_{g}^{+}=$ Σ_{u}^{+}which is the representation for the function z.
3. In a typical liquid dye laser, a dissolved compound is excited from a low energy state 1 to an upper state 2 by an energy source called the "pump." Some energy is lost to reach state 3 , and the laser radiation is released by the allowed transition $3 \rightarrow 4$. Identify any energetic process (photoionization, level-crossing, etc.) that could be responsible for each of the three energy-loss steps $2 \rightarrow 3,3 \rightarrow 4$, and $4 \rightarrow 1$, in the boxes provided below.

4. Write an expression that would determine the tunnelling probability of the $v=1$ harmonic oscillator wavefunction, i.e., the probability density that lies in the tunnelling region. Solution: We need the wavefunction for $v=1$ and the limits for the
integral:

$$
\eta_{1}(R)=A_{v=1} H_{v=1}(y) e^{-y^{2} / 2}=\left(\frac{k \mu}{\hbar^{2}}\right)^{1 / 8}\left(\frac{1}{2 \sqrt{\pi}}\right)^{1 / 2}(2 y) e^{-y^{2} / 2}
$$

where $y=\left(R-R_{e}\right)\left(\frac{k \mu}{\hbar^{2}}\right)^{1 / 4}$. The tunnelling region lies outside the range where $U(R)=\frac{1}{2} k\left(R-R_{e}\right)^{2}=E_{v=1}=3 \omega_{e} / 2$, which corresponds to $R=R_{e} \pm \sqrt{3 \omega_{e} / k}$. We can either integrate from infty to $R_{1} \equiv R_{e}-\sqrt{3 \omega_{e} / k}$ and from $R_{2} \equiv R_{e}+\sqrt{3 \omega_{e} / k}$ to ∞, or equivalently we can find the probability in the classically allowed region, and subtract this from 1 to get the probability in the classically forbidden (tunnelling) region:

$$
1-\int_{R_{1}}^{R_{2}} \eta_{1}(R)^{2} d R
$$

5. Using your best judgement, put the following in order of increasing value of the vibrational constant ω_{e} :
(a) ${ }^{31} \mathrm{P}^{34} \mathrm{~S}$
(b) ${ }^{31} \mathrm{P}_{2}^{+}$
(c) ${ }^{31} \mathrm{P}^{14} \mathrm{~N}$
(d) ${ }^{31} \mathrm{P}^{32} \mathrm{~S}$
(e) ${ }^{31} \mathrm{P}_{2}$

Solution: The PN and P_{2} have the same valence electron arrangement as N_{2} and so will also have triple bonds, nominally, by filling σ and π bonding orbitals of the valence $2 p$ or $3 p$ atomic orbitals. The extra electron in PS goes into an antibonding orbital, weakening the bond and leading to lower k and lower ω_{e}. In P_{2}^{+}, an electron is removed from a bonding orbital, which also leads to lower k and lower ω_{e}. Between P_{2} and PN, PN has the stronger bond (smaller N atom) and lower reduced mass, so in terms of $\omega_{e}, \mathrm{c}>\mathrm{e}>(\mathrm{a}, \mathrm{b}, \mathrm{d})$. We also know that $\mathrm{a}<\mathrm{d}$ because the bonding will be almost identical in the two, but $\mu_{31 \mathrm{P}^{34} \mathrm{~S}}>\mu_{31 \mathrm{P}^{32} \mathrm{~S}}$. It turns out (but you are not responsible for knowing) that removal of the bonding electron in P_{2}^{+}has a greater effect on k than adding the antibonding electron in PS, so the final ordering is $\mathrm{b}<\mathrm{a}<\mathrm{d}<\mathrm{e}<\mathrm{c}$.

