Exam 5 Solutions

1. 40 points.

(a) Evaluate $b_{g} \otimes a_{u}$ in the point group $C_{2 h} . B_{u}$.
(b) Is the transition from $a_{2 u}$ to $a_{1 u}$ in ethane (point group $D_{3 d}$) allowed:
i. by electric dipole selection rules? no
ii. by Raman selection rules? no

Solution: The direct product $a_{2 u} \otimes a_{1 u}=A_{2 g}$, which does not correspond to any of the first- or second-order cartesian functions.
(c) What is the symmetry representation for the $\mathrm{C}-\mathrm{C} \sigma$-bonding orbital in ethane?

Solution: The $\mathrm{C}-\mathrm{C} \sigma$-bond occupies the region along the axis of symmetry between the two carbons, and is symmetric under all the opertaions of the point group, so its representation is $\Gamma_{\text {tot sym }}=a_{1 g}$.
(d) Assume that Li_{2}^{+}follows the line for N_{2} in the correlation diagram.
i. Write the MO configuration for the ground state of Li_{2}^{+}. Solution: Li_{2}^{+} has 5 electrons, and the MO configuration is $1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{1}$.
ii. Write the term symbol for the ground state of Li_{2}^{+}. Solution: There is one unopaired electron, for a tiotal spin opf $S=1 / 2$, so $2 S+1=2$. The overall symmetry is the symmetry of the unpaired electron MO: ${ }^{2} \Sigma_{g}^{+}$.
2. List all the point groups possible for the fluorobenzenes, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{2}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{3}$, $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{4}, \mathrm{C}_{6} \mathrm{HF}_{5}$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$. Solution: There are five distinct possibilities. Other substitutions fall into one of these five point groups:

$C_{2 v}$

$D_{2 h}$

$D_{3 h}$

C_{s}

$D_{6 h}$
3. One corner of a multiplication table for the group $D_{4 h}$ is left blank below. For convenience, we have labeled the four dihedral \hat{C}_{2} rotation axes by v, w, x, and y, as shown. Fill in the missing entries. (You may choose any direction of rotation, but be consistent.)

4. The complete MO configuration of ethene is $1 a_{g}^{2} 1 b_{3 u}^{2} 2 a_{g}^{2} 3 a_{g}^{2} 2 b_{3 u}^{2} 1 b_{1 u}^{2} 1 b_{2 g}^{2} 1 b_{2 u}^{2}$.

(a) Label the coordinate axes x, y, and z above, based on the representations used in this MO configuration.
(b) Identify each of the MO's with one of the following groups of electrons: (A) $\mathrm{C}-\mathrm{H} \sigma$-bond electrons, (B) $\mathrm{C}-\mathrm{C} \pi$-bond electrons, (C) $1 s$ core electrons, (D) $\mathrm{C}-\mathrm{C} \sigma$-bond electrons.

Solution: The point group is $D_{2 h}$. There are two $b_{3 u}$ orbitals, one for the $1 s_{\mathrm{A}}-1 s_{\mathrm{B}}$ core orbital and another for one of the $\mathrm{C}-\mathrm{H} \sigma$-bond MOs. The $b_{3 u}$ representation is symmetric with respect to $\hat{C}_{2}(x)$, so the x axis must be the axis containing the two carbon atoms. The $b_{2 g}$ must correspond to the $\mathrm{C}-\mathrm{H} \sigma$-bond MOs that is symmetric for rotation in the molecular plane, $\hat{C}_{2}(y)$, but antisymmetric under the other rotations, so the molecular plane is the $x z$ plane. The two lowest energy MO's must be for the $1 s$ core electrons, The π-bonding MO is unique, in that it is the only orbital that will be antisymmetric with respect to reflection through the plane of the molecule, $\operatorname{sigma}_{x z}$, so that representation is the $1 b_{2 u}$.

$2 b_{3 u}^{2}$	A
$1 b_{1 u}^{2}$	A
$1 b_{2 g}^{2}$	A
$1 b_{2 u}^{2}$	B

