Exam 5 Solutions

1. 40 points.

- (a) Evaluate $b_g \otimes a_u$ in the point group C_{2h} . B_u .
- (b) Is the transition from a_{2u} to a_{1u} in ethane (point group D_{3d}) allowed:
 - i. by electric dipole selection rules? no
 - ii. by Raman selection rules? no

Solution: The direct product $a_{2u} \otimes a_{1u} = A_{2g}$, which does not correspond to any of the first- or second-order cartesian functions.

- (c) What is the symmetry representation for the C—C σ -bonding orbital in ethane? Solution: The C—C σ -bond occupies the region along the axis of symmetry between the two carbons, and is symmetric under all the opertaions of the point group, so its representation is $\Gamma_{\text{tot sym}} = a_{1g}$.
- (d) Assume that Li_2^+ follows the line for N_2 in the correlation diagram.
 - i. Write the MO configuration for the ground state of Li_2^+ . Solution: Li_2^+ has 5 electrons, and the MO configuration is $1\sigma_g^2 1\sigma_u^2 2\sigma_g^1$.
 - ii. Write the term symbol for the ground state of Li₂⁺. Solution: There is one unopaired electron, for a tiotal spin opf S = 1/2, so 2S + 1 = 2. The overall symmetry is the symmetry of the unpaired electron MO: $2\Sigma_{g}^{+}$.
- 2. List all the point groups possible for the fluorobenzenes, C₆H₅F, C₆H₄F₂, C₆H₃F₃, C₆H₂F₄, C₆HF₅, and C₆F₆. **Solution:** There are five distinct possibilities. Other substitutions fall into one of these five point groups:

3. One corner of a multiplication table for the group D_{4h} is left blank below. For convenience, we have labeled the four dihedral \hat{C}_2 rotation axes by v, w, x, and y, as shown. Fill in the missing entries. (You may choose any direction of rotation, but be consistent.)

4. The *complete* MO configuration of ethene is $1a_g^2 1b_{3u}^2 2a_g^2 3a_g^2 2b_{3u}^2 1b_{1u}^2 1b_{2g}^2 1b_{2u}^2$.

- (a) Label the coordinate axes x, y, and z above, based on the representations used in this MO configuration.
- (b) Identify each of the MO's with one of the following groups of electrons: (A) C-H σ -bond electrons, (B) C-C π -bond electrons, (C) 1s core electrons, (D) C-C σ -bond electrons.

Solution: The point group is D_{2h} . There are two b_{3u} orbitals, one for the $1s_A - 1s_B$ core orbital and another for one of the C—H σ -bond MOs. The b_{3u} representation is symmetric with respect to $\hat{C}_2(x)$, so the x axis must be the axis containing the two carbon atoms. The b_{2g} must correspond to the C—H σ -bond MOs that is symmetric for rotation in the molecular plane, $\hat{C}_2(y)$, but antisymmetric under the other rotations, so the molecular plane is the xz plane. The two lowest energy MO's must be for the 1s core electrons, The π -bonding MO is unique, in that it is the only orbital that will be antisymmetric with respect to reflection through the plane of the molecule, $sigma_{xz}$, so that representation is the $1b_{2u}$.

