1. 40 points.

(a) When ${ }^{12} \mathrm{C}^{32} \mathrm{~S}$ is excited from its $X^{1} \Sigma^{+}$ground state to the $A^{1} \Sigma^{+}$excited state, the bond length increases from $1.535 \AA$ to $1.944 \AA$. The ground state rotational constant is $0.8200 \mathrm{~cm}^{-1}$. Find the excited state value of B. Solution:
$B(A)=\frac{\hbar^{2}}{2 \mu R(A)^{2}}=\frac{\hbar^{2}}{2 \mu R(X)^{2}}\left(\frac{R(X)}{R(A)}\right)^{2}=B(X)\left(\frac{R(X)}{R(A)}\right)^{2}=\left(0.8200 \mathrm{~cm}^{-1}\right)\left(\frac{1.535}{1.944}\right)^{2}=0.5113 \AA$.
(b) Identify the strongest bonding interaction you would expect for each pair of atoms and/or molecules listed below.
i. Ar and Ar: no charges or dipoles so dispersion
ii. HF and Kr : polar HF induces dipole in Kr so dipole-induced dipole
iii. Na^{+}and N_{2} : ion induces dipole in Na^{+}so monopole-induced dipole
iv. NH_{3} and $\mathrm{Cl}^{-}: \mathrm{Cl}^{-}$is charged, NH_{3} is polar so monopole-dipole
v. HI and NH_{3} : both polar so dipole-dipole
(c) Estimate the dispersion energy in $\mathrm{kJ} / \mathrm{mol}$ between two naphthalene molecules $\left(\alpha=17.5 \AA^{3}, \Delta E \approx 8 \mathrm{eV}\right)$ at a separation of $6.5 \AA$. Solution:
$\left.-\left(17.5 \AA^{3}\right)^{2}(8 \mathrm{eV})\left(96.4 \mathrm{~kJ} \mathrm{~mol}^{-1} / \mathrm{eV}\right) /\left[8(6.5 \AA)^{6}\right)\right]=-0.39 \mathrm{~kJ} / \mathrm{mol}$.
(d) Four geometries for the Ar_{4} cluster are sketched below. Number them from 1 to 4 in order of decreasing stability, so that 1 is the most stable and 4 is the least stable.

Solution: The most stable should have the most pair interactions (atoms in direct constact). The square has 4 interactions, the rhombohedral has 5 , linear has 3, tetrahedral has 6 . The order is tet (1), rhom (2), square (3), linear (4).
2. The spacing between the $R(0)$ and $R(1)$ lines of the $v=0 \rightarrow 1$ transition of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ and the $v^{\prime}-1 \rightarrow v^{\prime}$ transition of ${ }^{14} \mathrm{~N}^{16} \mathrm{O}^{+}$are almost exactly equal. Find the upper state v^{\prime} of the ${ }^{14} \mathrm{~N}^{16} \mathrm{O}^{+}$transition.

Solution: The vibration-rotation coupling term $-\alpha_{e} J(J+1)(v+1 / 2)$ effectively reduces the value of the rotational constant as v increases, so the spacing between the lines gets smaller. We use the equation for the transition energies in the R -
branch to get the spacing Δ between $R(0)$ and $R(1)$ as a function of v^{\prime} :

$$
\begin{aligned}
\Delta E[R(0)] & =\omega_{e}-2 v^{\prime} \omega_{e} x_{e}+2(1) B_{e}-(1)\left(2 v^{\prime}+1\right) \alpha_{e} \\
\Delta E[R(1)] & =\omega_{e}-2 v^{\prime} \omega_{e} x_{e}+2(2) B_{e}-(2)\left(2 v^{\prime}+2\right) \alpha_{e} \\
\Delta\left(\mathrm{NO}^{+}\right) & =\Delta E[R(1)]-\Delta E[R(0)] \\
& =[4-2] B_{e}-\left[\left(4 v^{\prime}+4\right)-\left(2 v^{\prime}+1\right)\right] \alpha_{e}=2 B_{e}-\left(2 v^{\prime}+3\right) \alpha_{e}=\Delta(\mathrm{CO}) \\
\Delta(\mathrm{CO}) & =2\left(1.9313 \mathrm{~cm}^{-1}\right)-(5)\left(0.0175 \mathrm{~cm}^{-1}\right)=3.7751 \mathrm{~cm}^{-1} \\
v^{\prime} & =\frac{1}{2}\left[\frac{2 B_{e}-\Delta(\mathrm{CO})}{\alpha_{e}}-3\right]=\frac{1}{2}\left[\frac{2(1.9982)-3.7751}{0.0190}-3\right]=4.3
\end{aligned}
$$

Rounding to the nearest integer gives $v^{\prime}=4$. For the $v=3 \rightarrow 4$ transition in ${ }^{14} \mathrm{~N}^{16} \mathrm{O}^{+}, \Delta=3.79 \mathrm{~cm}^{-1}$, compared to $3.78 \mathrm{~cm}^{-1}$ for ${ }^{12} \mathrm{C}^{16} \mathrm{O}$.
3. Derive a formula in terms of $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$, and R for two polar molecules with their dipoles aligned in parallel. Solution:

We combine the Coulomb potential energies for the four interactions between the two molecules, where the distance ρ between charges of the same sign is $\sqrt{R^{2}+d^{2}}$:

$$
\begin{aligned}
u(R) & =\frac{1}{4 \pi \epsilon_{0}}\left[\frac{-q_{\mathrm{A}} q_{\mathrm{B}}}{R}+\frac{-q_{\mathrm{A}} q_{\mathrm{B}}}{R}+\frac{q_{\mathrm{A}} q_{\mathrm{B}}}{\left(R^{2}+d^{2}\right)^{1 / 2}}+\frac{q_{\mathrm{A}} q_{\mathrm{B}}}{\left(R^{2}+d^{2}\right)^{1 / 2}}\right] \\
& =\frac{1}{4 \pi \epsilon_{0}}\left[\frac{-2 q_{\mathrm{A}} q_{\mathrm{B}}}{R}+\frac{2 q_{\mathrm{A}} q_{\mathrm{B}}}{\left(R^{2}+d^{2}\right)^{1 / 2}}\right]=\frac{-2 q_{\mathrm{A}} q_{\mathrm{B}}}{\left(4 \pi \epsilon_{0}\right) R}\left[1-\left(1+\frac{d^{2}}{R^{2}}\right)^{-1 / 2}\right] \\
& \approx \frac{-2 q_{\mathrm{A}} q_{\mathrm{B}}}{\left(4 \pi \epsilon_{0}\right) R}\left[1-\left(1-\frac{d^{2}}{2 R^{2}}\right)\right]=\frac{-2 q_{\mathrm{A}} q_{\mathrm{B}}}{\left(4 \pi \epsilon_{0}\right) R}\left(\frac{d^{2}}{2 R^{2}}\right)=\frac{-\mu_{\mathrm{A}} \mu_{\mathrm{B}}}{\left(4 \pi \epsilon_{0}\right) R^{3}}
\end{aligned}
$$

4. Find the potential energy due to dispersion between two electrons trapped in onedimensional boxes of length a and separated by a distance R, under the same approximations we used to obtain our (more general) expression for the dispersion energy. Solution: The idea is to find an expression for $u_{\text {disp }}$ before we plugged in the polarizabilities, and then use the expressions we know for the particle in a box to evaluate anything we need. One equation to start from would be Eq. 9.30, which depends on the wavefunctions and energies of the system:

$$
\begin{aligned}
u_{\text {disp }}(R) & \approx \frac{e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} R^{6}} \frac{\left[\int \psi_{\mathrm{A} 1} z_{\mathrm{A}} \psi_{\mathrm{A} 2} d z_{\mathrm{A}}\right]^{2}\left[\int \psi_{\mathrm{B} 1} z_{\mathrm{B}} \psi_{\mathrm{B} 2} d z_{\mathrm{B}}\right]^{2}}{\left(E_{\mathrm{A} 1}+E_{\mathrm{B} 1}\right)-\left(E_{\mathrm{A} 2}+E_{\mathrm{B} 2}\right)} \\
& =\frac{e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2} R^{6}} \frac{\left[\left(\frac{2}{a}\right) \int_{0}^{a} \sin \left(\frac{\pi z_{\mathrm{A}}}{a}\right) \sin \left(\frac{2 \pi z_{\mathrm{A}}}{a}\right) z_{\mathrm{A}} d z_{\mathrm{A}}\right]^{2}\left[\left(\frac{2}{a}\right) \int_{0}^{a} \sin \left(\frac{\pi z_{\mathrm{B}}}{a}\right) \sin \left(\frac{2 \pi z_{\mathrm{B}}}{a}\right) z_{\mathrm{B}} d z_{\mathrm{B}}\right]^{2}}{(2-8) \pi^{2} \hbar^{2} /\left(2 m a^{2}\right)} .
\end{aligned}
$$

That's an adequate solution. The integrals turn out to each be equal to $8 a^{2} /\left(9 \pi^{2}\right)$, so the final value is

$$
u_{\mathrm{disp}}(R) \approx-\frac{\left[32 a /\left(9 \pi^{2}\right)\right]^{4} e^{4}}{6 \pi^{2}\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2} R^{6} /\left(2 m a^{2}\right)}=-\frac{2(32 / 9)^{4} a^{6} m e^{4}}{6 \pi^{10}\left(4 \pi \epsilon_{0}\right)^{2} \hbar^{2} R^{6}}=-\frac{2(32 / 9)^{4} a^{6}}{6 \pi^{10} R^{6}} E_{\mathrm{h}}
$$

