Chemistry 410B Exam 6 Spring 2008 Solutions

1. Consider the osmotic cell-within-a-cell design sketched below. The membrane between 1 and 2 is permeable only to solvent A, and the membrane between 2 and 3 is permeable to both A and B but not C. Find an expression for the *total pressure* P_3 in terms of P_1 and the molarities [B] and [C] in cell 3. Assume that X_A is much greater than X_B and X_C . Solution: The way we solved the problem for the single-cell case was by setting the chemical potentials of the solvent A equal in each region. So let's skip the second region and just equate μ_A in regions 1 and 3:

$$\mu_{A1} = \mu_{A3}$$

$$\mu_{A}^{\bullet}(P^{\bullet}) + V_{mA}(P_1 - P^{\bullet}) = \mu_{A}^{\bullet}(P^{\bullet}) + V_{mA}(P_3 - P^{\bullet}) + RT \ln a_A$$

$$V_{mA}(P_1 - P_3) = RT \ln a_A \approx RT \ln X_A = RT \ln(1 - X_B - X_C)$$

$$\approx -RT(X_B + X_C)$$

$$P_3 \approx P_1 + \frac{RT(X_B + X_C)}{V_{mA}} = P_1 + RT([B] + [C])$$

2. Find an equation for the slope phase boundary of a two-component liquid as it approaches the eutectic point on a T vs. X phase diagram. Solution: In arriving at the equation for freezing point depression, we needed the derivative of $\ln a_{\rm A}$ with respect to T, and this in turn is related to the concentration $X_{\rm B}$:

$$\begin{aligned} \frac{\partial \ln a_{\rm A}}{\partial T} &= \frac{\Delta_{\rm fus} H^{\bullet}_{\rm Am}}{RT^2} \\ &\approx \frac{\partial (1 - X_{\rm B})}{\partial T} = -\frac{\partial X_B}{\partial T} \\ \frac{\partial T}{\partial X_{\rm B}} &\approx -\frac{RT^2}{\Delta_{\rm fus} H^{\bullet}_{\rm Am}} \end{aligned}$$

So the phase boundary is correctly predicted to be a curve of increasingly negative slope as it approaches the discontinuity at the eutectic.

3. Sketch the contours to complete a **qualitative** version of the $H_2 + F$ reaction surface as a function of the H-H distance and the **H-H-F** angle.

4. A sample of 0.500 mol H_2S gas reacts with O_2 gas completely to yield H_2O and SO_3 , both in the gas phase. If the reactants start at 298 K and the final temperature is 458 K, what is the total change in entropy for this sample? **Solution:** Model this as a two step process: the first step is the isothermal reaction at 298 K; the second is heating the products to the final temperature of 458 K. The reaction is

$$H_2S(g) + 2O_2(g) \longrightarrow H_2O(g) + SO_3(g)$$

And don't forget in the final answer that the amount of material was specified:

$$\Delta_{\rm rxn} S = \Delta_{\rm rxn} S(298 \text{ K}) + C_P(\text{prod}) \ln \frac{458}{298}$$

= $\left\{ [188.825 + 256.76 - (205.79 + 2 \cdot 205.138)] + (33.577 + 50.67) \ln \frac{458}{298} \right\} (\text{ J K}^{-1} \text{ mol}^{-1})$
= $(-170.481 + 36.207) (\text{ J K}^{-1} \text{ mol}^{-1}) = -67.14 \text{ J K}^{-1} \text{ mol}^{-1}$

and multiply by the actual amount 0.500 mol of H₂S initially to get $\Delta S = -62.14$ J K⁻¹

5. Identify the number of degrees of freedom for each reactant and product in the two following reactions, and indicate whether the overall $\Delta_{\text{rxn}}S$ is likely to be positive or negative:

		$2O_2(g)$	\longrightarrow	$O_3(g)$	+	$\mathrm{O}(g)$
${ m translational}$		$2 \cdot 3 = 6$		3		3
rotational		$2 \cdot 2 = 4$		3		0
vibrational		$2 \cdot 1 = 2$		3		0
$\Delta_{\rm rxn}S$ + or –	—					
	$\operatorname{GeH}_4(g)$ +	$2O_2(g)$	\longrightarrow	$GeO_2(s)$	+	$2\mathrm{H}_2\mathrm{O}(g)$
${ m translational}$	3	$2 \cdot 3 = 6$		0		$2 \cdot 3 = 6$
rotational	3	$2 \cdot 2 = 4$		0		$2 \cdot 3 = 6$
vibrational	9	$2 \cdot 1 = 2$		9		$2 \cdot 3 = 6$
$\Delta_{\rm rxn}S$ + or –	—					