NAME:

Instructions:

- 1. Keep this exam closed until instructed to begin.
- 2. Please write your name on this page but not on any other page.
- 3. Please silence any noisy electronic devices you have.
- 4. Attached sheet(s) provide potentially useful constants and equations. You may detach these from the exam.
- 5. To receive full credit for your work, please
 - (a) show all your work, using only the exam papers, including the back of this sheet if necessary;
 - (b) specify the correct units, if any, for your final answers;
 - (c) use an appropriate number of significant digits for final numerical answers;
 - (d) stop writing and close your exam immediately when time is called.

Other notes:

- The first page portion of the exam is worth 40 points. Partial credit for these problems is not necessarily available.
- Your 2 best scores of the 3 remaining problems will count towards the other 60 points. Partial credit is available for these problems, so try each problem and do not erase any of your work.

1. **40** points.

(a) A graph of the activity coefficients γ for methanol and acetone is shown below, where $a_i = \gamma_i X_i$. Circle the region or regions of the graph where either liquid obeys Raoult's law.

- (b) On the F+H₂ reaction surface, shown on the opposite page, determine the energy in kJ mol⁻¹ of the system, relative to the minimum energy of H+HF, when the F atom is $2.5 \,\text{Å}$ from the nearest H atom, and the H atoms are separated by $1.5 \,\text{Å}$.
- (c) Identify the number of degrees of freedom contributed by each term in the following reaction of **linear** diacetylene (HC₄H), and indicate whether the overall $\Delta_{\rm rxn}S$ is likely to be positive or negative:

(d) For the metabolism of methylamine to formaldehyde and ammonia, the enthalpy of reaction is $-201.8\,\mathrm{kJ\,mol^{-1}}$ and the entropy of reaction is $148.8\,\mathrm{J\,K^{-1}\,mol^{-1}}$. Find the value of the equilibrium constant at $325\,\mathrm{K}$.

2. From the corresponding Henry's law coefficient $k_X = 8.64 \cdot 10^4$ bar, estimate the **molarity** of $N_2(g)$ in water at 298 K when the water is in equilibrium with air at a total pressure of 1.10 bar.

Assume that the air is 78% N_2 by volume (i.e., by mole number), and that the dissolved N_2 does not affect the volume of solution.

- 4. (a) Write the chemical reaction for the combustion of ketene gas, $H_2C=C=O$, at 298 K.
 - (b) If the enthalpy of combustion for ketene is $-1025.3\,\mathrm{kJ\,mol^{-1}}$, what is the enthalpy of formation for ketene?

(c) Estimate the adiabatic flame temperature of ketene, using the heat capacities at 298 K. For this calculation, assume water is a gas.

equipartition
$$E = \frac{1}{2}N_{\rm ep}Nk_BT = \frac{1}{2}N_{\rm ep}nRT$$
 thermo derivatives
$$dE = TdS - PdV + \mu_1dn_1 + \dots \qquad dH = TdS + VdP + \mu_1dn_1 + \dots$$

$$dF = -SdT - PdV + \mu_1dn_1 + \dots \qquad dG = -SdT + VdP + \mu_1dn_1 + \dots$$
 Maxwell relations
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V \quad \left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V \quad \left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$$

$$C_P = C_V + V\alpha \left[\left(\frac{\partial E}{\partial V}\right)_T + P\right]$$

$$\Delta S = nR \ln \left(\frac{V_f}{V_i}\right) \quad \Delta S = nC_{Pm} \ln \left(\frac{T_f}{T_i}\right)$$
 Gibbs-Duhem
$$\sum_i n_i \mu_i = 0$$

$$\Delta T_f = -\frac{RT^{\bullet f}_f X_B}{\Delta_{\text{fus}} H} \qquad \Pi = \frac{RTX_2}{V_m} = RTx_2$$

$$T_{\text{ad}} = T_1 - \frac{\Delta H_{,\text{rxn}}(T_1)}{C_P(\text{products})}$$

$$\Delta_{\text{rxn}} G = \Delta_{\text{rxn}} G^{\circ} + RT \ln \Xi$$
 adiab. flame
$$T_2 = T_1 - \frac{\Delta_{\text{rxn}} H(T_1)}{\overline{C}_P(\text{products})}$$

adiab. flame

Fundamental Constants

Avogadro's number	\mathcal{N}_A	$6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
Bohr radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e\epsilon^2}$	$5.29177249 \cdot 10^{-11} \text{ m}$
Boltzmann constant	k_B	$1.380658 \cdot 10^{-23} \text{ J K}^{-1}$
electron rest mass	m_e	$9.1093897 \cdot 10^{-31} \text{ kg}$
fundamental charge	e	$1.6021773 \cdot 10^{-19} \text{ C}$
permittivity factor	$4\pi\epsilon_0$	$1.113 \cdot 10^{-10} \mathrm{C^2 J^{-1} m^{-1}}$
gas constant	R	$8.314510 \text{ J K}^{-1} \text{ mol}^{-1}$
	R	$0.08314510 \text{ L bar K}^{-1} \text{ mol}^{-1}$
	R	$0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$
hartree	$E_{\rm h} = \frac{m_e e^4}{(4\pi\epsilon_0)^2 \hbar^2}$	$4.35980 \cdot 10^{-18} \text{ J}$
Planck's constant	h	$6.6260755 \cdot 10^{-34} \text{ J s}$
	\hbar	$1.05457266 \cdot 10^{-34} \text{ J s}$
proton rest mass	m_p	$1.6726231 \cdot 10^{-27} \text{ kg}$
neutron rest mass	m_n	$1.6749286 \cdot 10^{-27} \text{ kg}$
speed of light	c	$2.99792458 \cdot 10^8 \text{ m s}^{-1}$

Unit Conversions

	K	${\rm cm}^{-1}$	${\rm kJ~mol^{-1}}$	$kcal mol^{-1}$	erg	kJ
kHz =	$4.799 \cdot 10^{-8}$	$3.336 \cdot 10^{-8}$	$3.990 \cdot 10^{-10}$	$9.537 \cdot 10^{-11}$	$6.626 \cdot 10^{-24}$	$6.626 \cdot 10^{-34}$
MHz =	$4.799 \cdot 10^{-5}$	$3.336 \cdot 10^{-5}$	$3.990 \cdot 10^{-7}$	$9.537\cdot10^{-8}$	$6.626 \cdot 10^{-21}$	$6.626 \cdot 10^{-31}$
GHz =	$4.799 \cdot 10^{-2}$	$3.336 \cdot 10^{-2}$	$3.990\cdot10^{-4}$	$9.537\cdot10^{-5}$	$6.626 \cdot 10^{-18}$	$6.626 \cdot 10^{-28}$
K =	1	0.6950	$8.314 \cdot 10^{-3}$	$1.987 \cdot 10^{-3}$	$1.381 \cdot 10^{-16}$	$1.381 \cdot 10^{-26}$
$cm^{-1} =$	1.4388	1	$1.196 \cdot 10^{-2}$	$2.859\cdot10^{-3}$	$1.986 \cdot 10^{-16}$	$1.986 \cdot 10^{-26}$
$kJ \text{ mol}^{-1} =$	$1.203 \cdot 10^{2}$	83.59	1	0.2390	$1.661 \cdot 10^{-14}$	$1.661 \cdot 10^{-24}$
$kcal mol^{-1} =$	$5.032 \cdot 10^2$	$3.498\cdot 10^2$	4.184	1	$6.948 \cdot 10^{-14}$	$6.948 \cdot 10^{-24}$
eV =	$1.160 \cdot 10^4$	$8.066\cdot10^3$	96.49	23.06	$1.602 \cdot 10^{-12}$	$1.602 \cdot 10^{-22}$
hartree =	$3.158\cdot 10^5$	$2.195\cdot 10^5$	$2.625\cdot 10^3$	$6.275\cdot 10^2$	$4.360 \cdot 10^{-11}$	$4.360 \cdot 10^{-21}$
erg =	$7.243 \cdot 10^{15}$	$5.034 \cdot 10^{15}$	$6.022\cdot10^{13}$	$1.439 \cdot 10^{13}$	1	10^{-10}
J =	$7.243 \cdot 10^{22}$	$5.034 \cdot 10^{22}$	$6.022 \cdot 10^{20}$	$1.439 \cdot 10^{20}$	10^{7}	10^{-3}
$dm^3 bar =$	$7.243 \cdot 10^{24}$	$5.034 \cdot 10^{24}$	$6.022 \cdot 10^{22}$	$1.439 \cdot 10^{22}$	$1.000 \cdot 10^{9}$	0.1000
kJ =	$7.243 \cdot 10^{25}$	$5.034 \cdot 10^{25}$	$6.022\cdot10^{23}$	$1.439 \cdot 10^{23}$	10^{10}	1

distance	1 Å =	10^{-10} m	
mass	1 amu =	$1.66054 \cdot 10^{-27} \text{ kg}$	
energy	1 J =	$1 \text{ kg m}^2 \text{ s}^{-2}$	$=10^7 \text{ erg}$
${f force}$	1 N =	$1~{\rm kg}~{\rm m}~{\rm s}^{-2}$	$=10^5 \mathrm{\ dyn}$
electrostatic charge	1 C =	1 A s	$=2.9979\cdot 10^9$ esu
	1 D =	$3.3357 \cdot 10^{-30} \text{ C m}$	$=1\cdot 10^{-18}~{\rm esu~cm}$
magnetic field strength	$1 \mathrm{T} =$	$1 \text{ kg s}^{-2} \text{ A}^{-1}$	$=10^4$ gauss
pressure	1 Pa =	$1~\mathrm{N~m^{-2}}$	$= 1 \text{ kg m}^{-1} \text{ s}^{-2}$
	1 bar =	10^5 Pa	$=0.98692~\mathrm{atm}$