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A quantum chemical method based on a Hartree-Fock calcula-

tion with a small Gaussian AO basis set is presented. Its main

area of application is the computation of structures, vibrational

frequencies, and noncovalent interaction energies in huge mo-

lecular systems. The method is suggested as a partial replace-

ment of semiempirical approaches or density functional theory

(DFT) in particular when self-interaction errors are acute. In

order to get accurate results three physically plausible atom

pair-wise correction terms are applied for London dispersion

interactions (D3 scheme), basis set superposition error (gCP

scheme), and short-ranged basis set incompleteness effects. In

total nine global empirical parameters are used. This so-called

Hartee-Fock-3c (HF-3c) method is tested for geometries of

small organic molecules, interaction energies and geometries

of noncovalently bound complexes, for supramolecular sys-

tems, and protein structures. In the majority of realistic test

cases good results approaching large basis set DFT quality are

obtained at a tiny fraction of computational cost. VC 2013 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.23317

Introduction

Noncovalent interactions such as van der Waals interactions or

H-bonding play a crucial role in the chemistry of supramolecu-

lar and biomolecular systems as well as for nanostructured

materials.[1,2] They control host-guest and enzyme-substrate

binding, structures of proteins and DNA, antigen-antibody rec-

ognition or the orientation of molecules on a surface. Theoret-

ical methods based on first principles to complement

experimental studies which often can provide only limited in-

formation about these complex soft-matter systems seem

indispensable.

Many of these systems or at least reasonable models thereof

can nowadays be computed routinely with quite good accu-

racy by (dispersion corrected) density functional theory (DFT)

together with relatively large basis sets (triple-zeta quality or

better). For recent reviews how to treat the important long-

range London dispersion interactions in DFT, see Refs. [3, 4].

One perspective of such treatments is to provide accurate

input data to parameterize simpler force-field or even coarse-

grained theoretical models although full protein structures can

be treated.[5] But despite of the good cost-accuracy ratio of

DFT for large systems, these calculations are often prohibitive

in terms of the necessary computational efforts. Furthermore,

the quadrature of the exchange-correlation energy in DFT

causes numerical noise in geometry optimizations or fre-

quency calculations which is a particular problem in these of-

ten flexible systems. Accurate harmonic frequencies are an

important ingredient for the computation of thermodynamic

properties as for example free enthalpies of association of

supramolecules.[6] Another issue in DFT are charged systems

(e.g., proteins with charged residues) where the self interaction

error (SIE[7,8]) can lead to artificial charge-transfer and conver-

gence problems of the self consistent field (SCF)[5,9,10] at least

when “cheap” semilocal functionals of general gradient

approximation (GGA) type are used. Modern semiempirical

methods like DFTB3,[11] OM2,[12] or PM6[13] (for an overview

see Ref. [14]) represent an alternative in principle but suffer

from missing parametrization for important elements or

robustness in certain situations (e.g., charged complexes[15]).

As will be shown in this work, most of the above mentioned

problems can be alleviated by applying Hartee-Fock (HF)

theory together with small AO basis sets. The basic idea is to

fill the gap between existing semiempirical methods and DFT

in terms of the cost-accuracy ratio with a physcially sound

approach. Using HF has the following advantages: First, in con-

trast to DFT, HF does not suffer from SIE and extended

charged systems even when treated unscreened (in vacuo) are

unproblematic. Second, a HF calculation is performed com-

pletely analytical, including the computation of gradients and

Hessians so that no problems with numerical noise in geome-

try optimizations or frequency calculations occur. Third, con-

trary to standard semiempirical approaches HF is inherently

able to treat the important hydrogen bonding so that there is

no need for atom-type dependent H-bond corrections which

are normally applied for neglect of diatomic differential over-

lap (NDDO)-type methods.[16] Furthermore, the proposed HF

method can be applied without any parametrization to almost

any element of the periodic table and includes important

physical effects like Pauli-exchange repulsion correctly. The

accurate description of these steric interactions was always a

problem in semiempirical methods[14] and even current density

functionals are not free of inaccuracies for short interatomic

R. Sure, S. Grimme

Mulliken Center for Theoretical Chemistry, Institut f€ur Physikalische und The-

oretische Chemie der Universit€at Bonn, Beringstr. 4, D-53115 Bonn, Germany

E-mail: grimme@thch.uni-bonn.de

Contract grant sponsor: Fonds der Chemischen Industrie

VC 2013 Wiley Periodicals, Inc.

Journal of Computational Chemistry 2013, 34, 1672–1685 WWW.CHEMISTRYVIEWS.ORG1672

FULL PAPERWWW.C-CHEM.ORG



distances.[17,18] For density functionals which try to mimic the

HF short-range repulsive behavior see, for example, Ref. [19].

It is clear, however, that the Coulomb correlation energy is

entirely missing in HF and a small basis set can introduce fur-

ther severe errors. The suggested approach is hence not

meant to be generally applicable or as a replacement of DFT.

Rather, it should yield reasonable results for simple molecular

properties like equilibrium structures or vibrational frequencies

or for noncovalent interactions, that is, when changes in the

basic electronic structure during a chemical process is small.

The accurate computation of chemical reaction energies

requires the account of various short-ranged polarization and

correlation effects and is not of concern here (and likely not

computable with a minimal or small AO basis set).

Several years ago Pople noted that HF/STO-3G optimized

geometries for small molecules are excellent, better than HF is

inherently capable of yielding.[20,21] Similar observations were

made by Kołos already in 1979, who obtained good interac-

tion energies for a HF/minimal-basis method together with a

counterpoise-correction as well as a correction to account for

the London dispersion energy.[22] It seems that part of this val-

uable knowledge has been forgotten during the recent

“triumphal procession” of DFT in chemistry. The true conse-

quences of these intriguing observations could not be

explored fully at that time due to missing computational

resources but are the main topic of this work.

We recently noted the good performance of HF/large-basis

in combination with our latest dispersion correction scheme

D3[23,24] for noncovalent interactions, and we will use this well-

established dispersion correction (see Refs. [25–28] for recent

D3 applications) also in this work. Recently, work along similar

lines (i.e., using HF-D3/STO-3G) has been done by the group

of T. Martinez.[29] The basis set superposition error (BSSE) is

significant for a small or minimal basis set and will be treated

with our recently developed geometrical counterpoise correc-

tion (gCP).[30] Importantly, this approach also accounts for

intramolecular BSSE which is difficult to correct efficiently oth-

erwise. Both schemes are used essentially in unmodified form

here. Additionally, a new short-ranged basis (SRB) incomplete-

ness correction term is applied. This corrects for systematically

overestimated bond lengths for electronegative elements (e.g.,

N, O, F) when employing small basis sets. According to com-

mon practice, basis set effects are separated into BSSE and ba-

sis set incompleteness error (BSIE). In this sense, the SRB term

corresponds to the BSIE and the gCP scheme accounts for the

atom pair-wise part of the BSSE (for related BSSE correction

schemes see Refs. [31, 32]).

The basis set used here is of minimal quality for the often

occurring (“organic”) elements H, C, N, O and mostly of split-va-

lence (SV) or polarized SV (SVP) quality for the other elements.

It is dubbed “MINIX” from now on and an inherent (fixed) ingre-

dient of the method. For simplicity, this HF-D3-gCP-SRB/MINIX

method will be abbreviated HF-3c in the following where the

term “3c” stands for the three applied corrections, and the men-

tioned compound basis set is always implied. It should also indi-

cate that the method accounts for the important dispersion

contributions by the relatively accurate D3 scheme.[23,24]

We present HF-3c results in comparison to those obtained

with the semiempirical PM6[13] method and to standard DFT.

The PM6 method is used because it is parametrized for very

many elements so that the same systems can be calculated for

comparison. We investigate geometries of small organic mole-

cules as well as interaction energies and geometries of small

noncovalent complexes. As more realistic tests, geometries

and association free enthalpies of supramolecular complexes

will be considered. This also includes a test of the quality of

the harmonic vibrational frequencies. Finally, HF-3c results for

protein structures will be presented and compared to experi-

mental X-ray and solution NMR data.

Theoretical and Computational Methods

The HF-3c method

The starting point for calculating the electronic energy is a

standard HF treatment with a small Gaussian AO basis set. The

herein used so-called MINIX basis set consists of different sets

of basis functions for different groups of atoms (Table 1). The

valence scaled minimal basis set MINIS[33] and the split valence

double-zeta basis sets SV, SVP,[34] and def2-SV(P)[35] (the latter

together with effective core potentials (ECP)[36] for heavier ele-

ments) are employed. Many other possibilities have been con-

sidered but the chosen one not only represents a very good

compromise between accuracy and speed, but furthermore,

this basis seems to be balanced and easily to correct for defi-

ciencies (see below).

The HF calculations are conducted in conventional mode,

that is, the two-electron integrals are computed once and

stored on disk or in memory if possible. This option is a fur-

ther advantage of the small basis set approach and leads to

large computational savings. Only huge systems are treated in

direct mode by recalculating integrals in every SCF iteration.

The so-called resolution of the identity (RI) approximations are

not applied because the savings are negligible for small basis

sets and this approach can even slow-down the computations

due to overhead from the necessary linear algebra parts.

Three terms are added to correct the HF energy E
HF=MINIX
tot in

order to include London dispersion interactions, to account for

the BSSE and to correct for overestimated bond lengths. The

corrected total energy is calculated as

EHF-3c
tot 5E

HF=MINIX
tot 1E

D3ðBJÞ
disp 1EgCP

BSSE 1ESRB : (1)

Table 1. Composition of the MINIX basis set.

Element Basis

H-He, B-Ne MINIS

Li-Be MINIS11(p)

Na-Mg MINIS11(p)

Al-Ar MINIS11(d)

K-Zn SV

Ga-Kr SVP

Rb-Xe def2-SV(P) with ECP
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The first correction term E
D3ðBJÞ
disp is the atom pair-wise Lon-

don dispersion energy from the D3 correction scheme[23] and

applying Becke-Johnson (BJ) damping[24,37,38]

E
D3ðBJÞ
disp 52

1

2

Xatoms

A 6¼B

s6
CAB

6

R6
AB 1 a1R0

AB 1a2

� �6
1s8

CAB
8

R8
AB 1 a1R0

AB 1a2

� �8

 !

(2)

Here, CAB
n denotes the nth-order dispersion coefficient

(orders 5 6, 8) for each atom pair AB, RAB is their internuclear

distances and sn are the order-dependent scaling factors. The

cutoff radii R0
AB 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAB

8 =CAB
6

p
and the fitting parameters a1 and

a2 are used as introduced in the original works.[37,38] For this

method, the three usual parameters s8, a1, and a2 were refitted

using reference interaction energies of the the S66 test set

complexes.[17] This results in s850:8777, a150:4171, and

a252:9149. The parameter s6 was set to unity as usual to

enforce the correct asymptotic limit and the gCP correction

(see below) was already applied in this fitting step.

The second term EgCP
BSSE denotes our recently published geo-

metrical counterpoise (gCP) correction[30] for BSSE, which

depends only on the atomic coordinates of a given molecule.

The difference in atomic energy Emiss
A between a large (nearly

complete) basis set and the target basis set (MINIX in our

case) for each free atom A is calculated for the HF Hamilto-

nian. The Emiss
A term is multiplied with a decay function

depending on the interatomic distances RAB. The sum over all

atom pairs reads

EgCP
BSSE 5r

Xatoms

A

Xatoms

A6¼B

Emiss
A

exp 2a RABð Þb
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SAB Nvirt

B

q ; (3)

where a, b, and r are fitting parameters, SAB is a Slater-type

overlap integral and Nvirt
B is the number of virtual orbitals on

atom B in the target basis. The SAB is evaluated over a single

s-type orbital centered on each atom and using optimized Sla-

ter exponents weighted by the fourth fitting parameter g. The

gCP parameters were fitted in a least-squares sense against

counterpoise correction data obtained by the scheme of Boys

and Bernadi[39] as described in the original publication.[30] This

way, for each combination of a Hamiltonian (HF or DFT) and a

basis set, a specific set of parameters a, b, r, and g was cre-

ated. We found that this gCP correction performs particularly

well for HF in combination with a small basis set. For further

details and recent applications see Refs. [30, 40].

The last term ESRB is a short-ranged correction to deal with

basis set deficiencies which occur when using small or minimal

basis sets. It corrects for systematically overestimated covalent

bond lengths for electronegative elements and is again calcu-

lated as a sum over all atom pairs:

ESRB 52s
Xatoms

A

Xatoms

A 6¼B

ZAZBð Þ3=2exp 2c R0;D3
AB

� �3=4
RAB

� �
(4)

Here, R0;D3
AB are the default cutoff radii as determined ab ini-

tio for the D3 dispersion correction scheme[23] and ZA, ZB are

the nuclear charges. The correction is applied for all elements

up to argon. The empirical fitting parameters s 5 0:03 and

c 5 0:7 were determined to produce vanishing HF-3c total

atomic forces for the B3LYP-D3(BJ)/def2-TZVPP equilibrium

structures of 107 small organic molecules. The other two cor-

rection terms were included in the fitting procedure of ESRB,

which was carried out by minimizing the HF-3c RMS gradient

for the reference geometries. The D3 and gCP parameters

were kept constant at their previously optimized values in this

procedure. Because the SRB correction also effects covalent

bond energies, the thermochemical properties of HF-3c are dif-

ferent from those of HF-D3-gcp/MINIX. Some cross-checking

for standard reaction energies of organic molecules showed

that HF-3c performs reasonably well, but further tests which

are out of the scope of this work should be conducted to vali-

date this finding.

In summary, the HF-3c method consists of only nine empiri-

cal parameters, three for the D3(BJ) dispersion, four in the gCP

scheme, and two for the SRB correction. Because the fits are

done independently, this parametrization procedure was easy

to perform and changes in the setup of the fit are not

expected to have any major effect on the method. No element

or pair-specific terms need to be determined, that is, the nine

parameters apply globally for all elements considered (i.e., cur-

rently up to xenon). Total energies and 3c-components for a

few molecules are given in the Supporting Information.

Technical details

All HF/MINIX and B3LYP[41,42]-D3(BJ)/def2-TZVPP[35] calculations

were performed using TURBOMOLE 6.4.[43] In case of B3LYP,

the RI approximation for the Coulomb integrals[44] was applied

using matching default auxiliary basis sets.[45] The numerical

quadrature grid m4 was employed for integration of the

exchange-correlation contribution. The 3c-terms to energy and

analytical gradient were calculated by a new code which basi-

cally merges the freely available programs dftd3 and

gCP.[46] For both, HF and DFT, computations of the harmonic

vibrational frequencies were performed analytically using the

aoforce code from TURBOMOLE. The 3c-contributions to the

Hessian are computed numerically by two-point finite differen-

ces of analytical gradients.

All PM6[13] and PM6-DH2[47] calculations were undertaken

using MOPAC 2012[48] for the calculation of energies and gra-

dients but the relax or statpt codes from TURBOMOLE 6.4

for executing the geometry relaxation steps. Vibrational fre-

quencies were computed numerically using MOPAC 2012.

The COSMO-RS model[49,50] was used as implemented in

COSMOtherm[51] to obtain all solvation free enthalpies. Single

point calculations on the default BP86[41,52]/def- TZVP[53] level

of theory were performed on the optimized gas phase geome-

tries. All visualizations of molecules were done with USCF Chi-

mera version 1.6.1.[54] The root mean square deviation (RMSD)

of two geometries was calculated using a quaternion algo-

rithm[55] in order to get an all atom best-fit. The HF-3c method

has also been implemented into the upcoming version of the

free ORCA software[56] where it is invoked simply by keyword.
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Computation of free enthalpies of association

Free enthalpies of association for host and guest molecules in

a solvent X at a temperature T are calculated as

DGa5DE1DGT
RRHO 1DdGT

solv Xð Þ: (5)

Here, DE denotes the gas phase interaction energy of the

fully optimized molecules and GT
RRHO is the sum of thermal

corrections from energy to free enthalpy within a rigid-rotor-

harmonic-oscillator approximation for each molecule in the

gas phase at a given temperature T, including the zero-point

vibrational energy. All harmonic frequencies are scaled with a

factor of 0.86 for HF-3c. For obtaining the vibrational entropy,

low-lying modes below �100 cm21 are treated within a rigid-

rotor model in order to reduce their error in the harmonic

approximation, for details see Ref 6. The solvation free en-

thalpy dGT
solv Xð Þ is calculated for each gas-phase species by

employing the COSMO-RS model.[49,50] No further (empirical)

corrections are applied and the so computed values can be

directly compared to experimental data.

Results and Discussion

Geometries of small organic molecules

The fitting set for the SRB correction of basis set deficiencies

consists of 107 small organic molecules (2 to 34 atoms) con-

taining the elements H, B, C, N, O, F, Si, P, S, and Cl. All stand-

ard functional groups are represented within this test set (for

a detailed list of molecules see Supporting Information). The

B3LYP-D3(BJ)/def2-TZVPP geometries, which have been proven

to be reliable for organic molecules, were used as reference

structures in the fitting procedure. PM6 calculations were per-

formed to compare the HF-3c results to those from a widely

used semiempirical approach.

Geometry optimization of these organic molecules using the

final 3c-parameters yield an average RMSD between the HF-3c

and B3LYP-D3 cartesian coordinates of 0.033 Å. This is consid-

ered to be a very good result meaning that at least for the fit

set HF-3c yields structures of almost B3LYP/large-basis quality.

The RMSD values for the individual molecules are shown in

Figure 1. One of the rare “outliers” with a notably higher

RMSD (adenine, 63) merely shows a methyl group rotated by

180
�

compared with the reference structure. PM6 shows more

“outliers” than HF-3c and the average RMSD of 0.910 Å is

much larger. Also the PM6 geometries of adenine as well as

methyl acetate (43) exhibit a rotated methyl group. Further-

more, hydrogen peroxide (30) is planar whereas glyoxal (37)

and urea (58) are not as they should be. Hydrazine (50),

diphosphane (87), and PH2NH2 (91) adopt the anti instead of

the gauche conformation when optimized with PM6. These

drastic conformational changes do not occur in optimizations

with the HF-3c method.

Comparison of the lengths for the most frequent bonds

(CAC, C@C, conjugated CAC/C@C, CAH, OAH NAH, PAH,

BAH, CAF, C@O, CAO, CAN, conjugated CAN/C@N, CAS,

CACl, CAB and CASi) results in an overall mean deviation

(MD) with respect to the reference structures of 0.012 Å for

HF-3c and 0.005 Å in case of PM6. With a few exceptions

(C@C, BAH and CAF) the HF-3c bond lengths tend to be

slightly too long. The mean absolute deviation (MAD) for all

considered bond lengths in HF-3c and PM6 structures is 0.015

Å and 0.016 Å respectively. Hence, the overall error for bond

lengths is similar for both methods. Due to a better descrip-

tion of bond angles and dihedral angles, HF-3c geometries

generally show smaller RMSD values than PM6 structures.

The accuracy as demonstrated above also results from the

SRB correction. This is more clearly seen by comparing some

critical bond lengths with and without this term in typical

Figure 1. RMSD between HF-3c or PM6 and B3LYP-D3/def2-TZVPP geometries for 107 small organic molecules. The molecules are sorted according to the

type of atoms and hence to the functional groups they contain. The atoms given in brackets are only rarely represented in the corresponding group. The

lines between the data points are drawn just to guide the eye.
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molecules. For example the C@O bond length in a ketone like

acetone is 1.268 Å at the HF-D3-gCP/MINIX level (1.264 Å at

HF/MINIX) which is too long by about 0.06 Å. This systematic

deviation it corrected with HF-3c and the computed length of

1.206 Å is sufficiently close to the B3LYP reference value of

1.209 Å. Another example is hexaflouroethane where the cor-

responding values for the CAF bond length are at 1.429 Å the

HF-D3-gCP/MINIX level (1.413 Å at HF/MINIX) and 1.343 Å at

the HF-3c level (1.334 Å at B3LYP). A few more comparisons

are given in Table 2 where in general the strong influence is

seen for several bonds in polar situations.

As a cross-validation, two artificial neutral organic molecules

containing a few heteroatoms were constructed in a more or

less arbitrary fashion and fully optimized with all three meth-

ods taking again B3LYP-D3(BJ)/def2-TZVPP as reference. The

RMSD relative to the reference structure is 0.15 Å for HF-3c

and 1.043 Å for PM6 in case of the first molecule and 0.310 Å

for HF-3c and 1.236 Å for PM6 in case of the second molecule

(see Fig. 2). For both structures HF-3c performs significantly

better than PM6. Additionally, PM6 is not able to correctly

describe the bond angle at the oxygen-atom of the silyl ether

group in the second molecule but instead yields an almost lin-

ear coordination geometry.

Additionally, we performed single point calculations for 10

conformers of the tripeptide phenylalanyl-glycyl-glycine

(PCONF set[57]), 15 conformers of the n-alkanes butane, pen-

tane, and hexane (ACONF set[58]), 15 conformers of the sugar

3,6-anhydro-4-O-methyl-D-galactitol (part of the SCONF set[59]),

and 10 conformers of cystein (CYCONF set[60]) as included in

the GMTKN30 benchmark set.[61] The reference energies were

taken from the original publications. For PCONF, SCONF, and

CYCONF they were calculated on the coupled cluster with sin-

gles and doubles excitations and perturbative triples at the

estimated complete basis set limit (CCSD(T)/CBS) level of

theory and the ones for ACONF on the W1h-val level. The

mean absolute deviation (MAD) for all conformational energies

is 1.4 kcal/mol for HF-3c, which is an reasonable result in par-

ticular because this property is quite sensitive to the quality of

the AO basis set. PM6-DH2 yields a much higher MAD of 2.8

kcal/mol while B3LYP-D3/def2-QZVP gives a much smaller

MAD of 0.3 kcal/mol. The D3-correction contributes signifi-

cantly to this good result, as plain B3LYP/def2-QZVP yields an

MAD of 1.5 kcal/mol (i.e., is worse than HF-3c).

Further cross-validation studies for structures are performed

on noncovalent complexes and their fragments as discussed in

the next sections.

Geometries and interaction energies for S22 and S66 sets

In order to test the capability of the HF-3c method to describe

noncovalent interactions, single-point calculations as well as

geometry optimizations for the S22[62] and S66[17] test sets

were carried out. Due to under representation of some interac-

tion motifs, the S66 set was published by the Hobza group as

a revised and extended version of the S22 set.[17] We also

used their recently published X40 test set, which was designed

to cover different halogen bonding interactions.[63] Reference

values for interaction energies and geometries were taken

from the original publications. The interaction energies refer

to the estimated CCSD(T)/CBS level and the geometries were

optimized on the MP2/cc-pVTZ(CP) or CCSD(T)/cc-pVTZ(noCP)

level of theory.

Again, PM6 optimized geometries and interaction energies

are used for comparison. Additionally, the DH2 correction[47] to

PM6 for hydrogen-bonding and dispersion was employed

which is mandatory for this kind of benchmark. Due to known

problems with this correction for geometry optimizations, the

scheme of calculating PM6-DH2 energies on PM6 geometries

proposed by Hobza et al. was applied.[47,64]

For the S22 and S66 sets, the single-point HF-3c interaction

energies are rather accurate with MADs of 0.55 kcal/mol and

0.39 kcal/mol, respectively (Table 3). These values are consider-

ably lower than the previously published ones (0.64 and 0.51

kcal/mol) for HF/mini calculations applying just the D3 and

gCP correction.[30] Thus, the modified basis set together with

the SRB correction term and reparametrization gives a further

Table 2. Critical bond lengths for some exemplary molecules at the HF/

MINIX, HF-D3-gCP/MINIX, HF-3c and B3LYP-D3/def2-TZVPP level.

Molecule Bond

R(HF/

MINIX)

R(HF-D3-

gCP/MINIX) R(HF-3c) R(B3LYP-D3)

Acetone C@O 1.264 1.268 1.206 1.209

Urea C@O 1.275 1.280 1.216 1.218

Methaneimine C@N 1.294 1.298 1.260 1.264

Ethanol CAO 1.478 1.486 1.428 1.428

Urea CAN 1.423 1.427 1.397 1.372

Hexaflouroethane CAF 1.413 1.429 1.343 1.334

H2S2 SAS 2.132 2.136 2.122 2.073

All distances are given in Å.

Figure 2. Two artificially constructed organic molecules optimized with HF-

3c (left grey structures) and PM6 (right grey structures). Black colored B3LYP-

D3/def2-TZVPP geometries serve as reference. All RMSDs are given in Å.
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significant improvement. This accuracy is comparable or even

better than obtained for some density functionals at the DFT-

D3/large-basis level.[18]

The MD values of 20.01 kcal/mol in case of S22 and 20.09

kcal/mol in case of S66 are almost insignificant. In case of the

X40 test set both the MAD of 1.44 kcal/mol and the MD of

20.80 kcal/mol are much higher than for S22 (MAD of 0.55

kcal/mol) and S66 (MAD of 0.38 kcal/mol) but they are still rea-

sonable for the applied theoretical level. In conclusion, it is

clear that HF-3c is able to provide a qualitatively correct and

quantitatively reasonable description of general noncovalent

interactions. For a detailed analysis of responsible systematic

error compensations see Ref. [30].

In contrast, PM6 single-point calculations result in equal val-

ues for the MD and MAD of 3.39 kcal/mol for the S22 and 2.68

kcal/mol for the S66 test set which indicates a systematical

underbinding. This error can be reduced by applying the DH2

correction which accounts for dispersion and H-bonding. PM6-

DH2 yields an MD of 0.13 kcal/mol and an MAD of 0.39 kcal/

mol in case of the S22 and an MD of 0.35 kcal/mol and an

MAD of 0.65 kcal/mol for the S66 set. Again, for the X40 set

the deviations are much higher (MAD of 1.46 kcal/mol, MD of

0.35 kcal/mol). Altogether, the HF-3c method performs slightly

better than PM6-DH2 in reproducing the interaction energies.

For the S22 set HF-3c geometry optimizations lead to an

MD of 0.42 kcal/mol and an MAD of 0.94 kcal/mol for the

interaction energies. Optimizations on the PM6 level of theory

results in much higher values of 3.11 kcal/mol for both MD

and MAD. Except for complex 10, which shows an imaginary

vibrational mode for methyl rotation on the HF-3c level of

theory, all optimized complexes are minima on the corre-

sponding potential energy surface (PES) for both methods

when started straightforwardly from the reference coordinates.

In various cases, the convergence criteria for energy and gradi-

ent and the step size for the numerical PM6 frequency calcula-

tions had to be adjusted in order to remove small artificial

imaginary frequencies. Similar numerical problems do not

occur in HF-3c calculations. PM6-DH2 single-point calculations

on PM6 geometries yield an MD of 0.1 kcal/mol and an MAD

of 0.76 kcal/mol which are slightly lower than the correspond-

ing values for HF-3c although the inconsistencies in the PM6

optimizations should be kept in mind.

Comparison of the resulting geometries with the reference

structures yields an average RMSD of 0.21 Å in case of HF-3c

and 0.45 Å for PM6. As shown in Figure 3(a), there are more

outliers for PM6 than for HF-3c geometries. The HF-3c geome-

tries of both, the T-shaped benzene dimer (20) and the T-

shaped benzene� � �indole complex (21) show structures in

between a T-shaped and parallel-stacked one. The rings of

two parallel stacked systems, namely the benzene dimer (11)

and the benzene� � �indole complex (14), are rotated towards

each other compared with the reference structures. Altogether,

the general structural motifs of the S22 complexes can be

reproduced well with HF-3c keeping in mind the flatness of

the corresponding PES. In contrast, PM6 seems to systemati-

cally disfavor parallel stacked geometries. Instead of a parallel

stacking the benzene dimer (11) shows a T-shaped stacking,

the uracil dimer (14) an H-bonded geometry and the benzene-

indole complex (14) a structure between parallel-stacked and

T-shaped. Furthermore, the orientation of the monomers in

PM6 optimized geometry of the methane dimer (8) differs

from the one in the reference structure. Overall, the HF-3c

geometries in the S22 set match the reference structures bet-

ter than the PM6 ones.

The results for the S66 set reveal a similar picture. Geometry

optimizations of the complexes yield an MD of 0.08 kcal/mol

and an MAD of 0.59 kcal/mol for the interaction energy in

case of HF-3c and again the same value for the MD and MAD

of 2.33 kcal/mol for PM6. The PM6-DH2 single-point calcula-

tions on PM6 geometries result in an MD of 0.33 kcal/mol and

an MAD of 0.81 kcal/mol which are slightly higher than the

values for HF-3c. Similar to the S22 set there are more outliers

for PM6 than for HF-3c geometries (Fig. 3b) compared to the

reference. The average structural RMSD is 0.20 Å in case of HF-

3c and 0.68 Å for PM6. All structures were proven to be min-

ima on the corresponding PES though PM6 again shows prob-

lems with numerical noise. In general, HF-3c geometries

reproduce the reference structures very well. The acetamide

dimer (21) shows a rotated methyl group and the rings of the

parallel stacked benzene� � �uracil complex (28) are differently

rotated towards each other compared to the reference struc-

tures. In all cases, the basic interaction motifs are preserved in

the HF-3c geometries which is a very important result.

PM6 geometries of the acetic acid dimer (20), acetamide

dimer (21), and the ethyne� � �acetic acid complex (60) feature a

rotated methyl group. As already observed for the S22 set PM6

prefers T-stacked geometries over parallel stacked ones. Almost

every parallel stacked reference geometry shows T-shaped bind-

ing when optimized with PM6. Furthermore, the pyridine-

uracil complex (29) shows an H-bonded geometry instead of

parallel stacking and the H-bonded pyridine� � �methylamine

complex (66) does not exhibit an H-bond at all.

Overall the HF-3c method reproduces the reference geome-

tries of the S22 and S66 sets better than PM6. The RMSD is

smaller and the general interaction motives are preserved in

all cases indicating robustness in practical applications. The

MDs and MADs for HF-3c interaction energies derived from

optimized structures are similar to single-point values indicat-

ing that the HF-3c and reference PES are reasonably parallel to

each other. The accuracy for HF-3c computed noncovalent

interaction energies approaches that of dispersion corrected

DFT but is less than the best DFT-D3/large-basis variants.

Table 3. MD and MAD for the single-point interaction energies of the

S22, S66, and X40 test sets for the three methods HF-3c, PM6, and PM6-

DH2.

HF-3c PM6 PM6-DH2

MD MAD MD MAD MD MAD

S22 20.01 0.55 3.39 3.39 0.13 0.39

S66 20.09 0.38 2.68 2.68 0.35 0.65

X40 20.80 1.44 1.19 1.73 0.35 1.46

All energies are given in kcal/mol.
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Thermal corrections to Gibbs free energies for small organic

molecules and noncovalent complexes

Vibrational frequency calculations and the corresponding zero-

point energy and thermal corrections to Gibbs free energies

are supposed to be a main area of application of HF-3c. We

randomly chose ten molecules out of 107 from the geometry

fitting set, four complexes from S22, and six from the S66 test

set. For these 20 molecules the E ! G 298ð Þ corrections were

calculated using HF-3c, PM6, and B3LYP-D3/def2-TZVPP as ref-

erence. The scaling factors for the harmonic vibrational fre-

quencies were set to 0.86 for HF-3c, 1.0 for PM6 and 0.97 for

B3LYP. Low-lying modes below �100 cm21 were treated within

a rigid-rotor model[6] in order to reduce their error in the har-

monic approximation when obtaining the vibrational entropy.

The final thermal corrections for all 20 molecules are listed in

the Supporting Information.

Comparison of HF-3c with the B3LYP reference values shows

a good agreement with an MD of 0.8 kcal/mol and an MAD of

1.9 kcal/mol (corresponding to about 3% relative error). For

most molecules, the deviations range from only 21.3 to 2.7

kcal/mol. The four molecules with the highest deviations are

tetramethylsilane, the ethane-pentane complex, and the cyclo-

pentane-neopentane complex where the HF-3c thermal correc-

tions are 4.2 to 7.4 kcal/mol too large and the T-shaped

benzene dimer for which the HF-3c value is 7 kcal/mol too

Figure 3. RMSD between HF-3c or PM6 and CCSD(T)/cc-pVTZ(noCP) or MP2/cc-pVTZ(CP) reference geometries for S22 (a) and S66 (b). The lines between

the data points are drawn just to guide the eye.
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small. The large error for the benzene dimer can be attributed

to the very shallow potential energy surface. In case of PM6,

the thermal corrections for all regarded molecules except

ammoniaborane are too small. The MD with respect to the

B3LYP-D3/def2-TZPP values is 27.0 and the MAD is 7.2 kcal/

mol, that is, significantly worse than for HF-3c.

Geometries and association free enthalpies of

supramolecular complexes

Recently, we compiled a set of 12 supramolecular complexes

(S12L set) and compared calculated free enthalpies of associa-

tion with experimental data.[6] This set was very recently used

to benchmark various dispersion corrections to DFT[15] and will

be taken in this work for cross-validation of the HF-3c method

on large realistic systems.

The investigated complexes are two “tweezer” complexes

with tetracyanoquinone and 1,4-dicyanobenzene (1a and 1b

measured in CHCl3),[65] two “pincer” complexes of organic p-

systems (2a and 2b in CH2Cl2),[66] the fullerenes C60 and C70 in

a “buckycatcher” (3a and 3b in toluene),[67] complexes of an

amide macrocycle (mcycle) with glycine anhydride and benzo-

quinone (4a and 4b in CHCl3),[68] complexes of cucurbit[6]uril

(CB6) with butylammonium (BuNH3) and propylammonium

(PrNH3) (5a and 5b in a 1:1 mixture of formic acid and

water)[69] and complexes of cucurbit[7]uril (CB7) with a dica-

tionic ferrocene derivative (FECP) and 1-hydroxyadamantane

(6a and 6b in water).[70]

Computations at the PW6B95-D3(BJ)/def2-QZVP’//TPSS-

D3(BJ)/def2-TZVP level for gas phase interaction energies DE to-

gether with a rigid rotor harmonic oscillator model for thermody-

namical corrections DGRRHO and the COSMO-RS model for

solvation free enthalpies DdGsolv are able to reproduce the exper-

imental values for association free enthalpies for these complexes

with good accuracy. The MAD from experimental data was about

2 kcal/mol.[6] These results were used as a reference to test the

performance of HF-3c for geometries and free enthalpies of asso-

ciation of the S12L set of supramolecular complexes. Again, PM6-

DH2//PM6 calculations are performed for comparison.

Figure 4a shows the magnitudes of the contributions to the

association free enthalpy (DE, DGRRHO , and DdGsolv ) for HF-3c,

PW6B95-D3//TPSS-D3 as reference and PM6 or PM6-DH2//PM6,

respectively. The HF-3c gas phase interaction energy tends to

be lower than the PW6B95-D3 energy, the deviation for the

complexes 1a, 1b, 2a, 2b, 4a, 4b, and 6b is 0.5 to 22 kcal/mol.

For C60@Catcher (3a) and C70@Catcher (3b) HF-3c is overbinding

by 5 to 6 kcal/mol, for BuNH3@CB6 (5a) and PrNH3@CB6 (5b) by

10 kcal/mol and for FECP@CB7 (6a) by 12.6 kcal/mol. The result

for FECP@CB7 is not surprising since HF is known to describe

transition metal complexes in general badly. Additionally, the

complex has a double positive charge, which is challenging for a

small basis set method due to large polarization effects. Consist-

ent with this, the two complexes 5a and 5b with a larger error

also carry a positive charge. These errors demonstrate that HF-

3c is well-behaved and performs as expected.

Overall, the HF-3c gas phase interaction energies have an

MD of 24.2 and an MAD of 4.4 kcal/mol compared with the

PW6B95-D3//TPSS-D3 reference values. The MD indicates a

small systematical overbinding and the MAD is similar to vari-

ous dispersion corrected DFT methods employing large AO ba-

sis sets.[6]

All PM6 interaction energies are much higher than the refer-

ence values, the deviation ranges from 3 up to 30 kcal/mol.

Applying the PM6-DH2//PM6 approach, the deviations

decrease but remain larger than for HF-3c (6.1 kcal/mol com-

pared to 4.4 kcal/mol). Exceptions are C70@Catcher (3b) and

FECP@CB7 (6a) with an error of 23.6 and 27.6 kcal/mol,

respectively. Except for complexes 1a and 1b, PM6-DH2 over-

binds and the MD (25.6 kcal/mol) is absolutely larger than for

HF-3c.

Comparison of the HF-3c geometries with the TPSS-D3 refer-

ence structures yield a minimal RMSD of 0.04 Å for the com-

plex C60@Catcher (3a) and a maximal RMSD of 0.48 Å for p-

Syst1@Pincer (2a). The average RMSD is 0.19 Å. The corre-

sponding values for PM6 are 0.11 Å, 0.97 Å and 0.45 Å. For

both methods, the complexes BuNH3@CB6 (5a) and

PrNH3@CB6 (5b) show a slightly different coordination of the

guest molecule compared with the reference geometries. Simi-

lar to the small noncovalent complexes, the HF-3c method

reproduces the reference structures better than PM6.

Since the geometry enters the COSMO-RS calculation, the

better performance of HF-3c is also reflected in the solvation

free enthalpies DdGsolv of the complexes. The DdGsolv values

based on the HF-3c geometries deviate from the reference val-

ues in the range from only 20.5 to 12.6 kcal/mol whereas the

deviation based on PM6 geometries ranges from 22.7 to 16.1

kcal/mol.

Because of the high computational cost, the thermodynamic

correction DGRRHO on the TPSS-D3/def2-TZVP level of theory

has been computed only for three complexes (2a, 3a, and 4a).[6]

Both simpler methods match the three reference values rela-

tively well. The highest deviation is 1.5 kcal/mol in case of HF-3c

and 1.3 kcal/mol for PM6 corresponding to about 5–10% of

DGRRHO . Because the number of comparisons is very small we

can only guess that both methods might perform equally well.

The sum of all these contributions, the association free en-

thalpy DGa, is shown in Figure 4b in comparison to the experi-

mental values. Since the gas phase interaction energy is the

largest contribution and also most sensitive to the quality of

the underlying electronic structure method, the error in DGa

mainly reflects the error in DE. Therefore, HF-3c yields DGa val-

ues which are too low (overbinding). Nevertheless, the calcu-

lated DGa values from HF-3c are surprisingly good regarding

the simplicity of the method and an MD of 25.2 and an MAD

of 6.2 kcal/mol seems to be very respectable. The PM6-DH2//

PM6 values are even lower and hence, the overbinding is even

stronger than for HF-3c in most cases. The only significant

exception is the complex FECP@CB7, whose DGa (PM6-DH2//

PM6) matches the reference value much better than the HF-3c

one. Since the HF-3c geometries are quite accurate and the

derived values for DdGsolv and DGRRHO in particular are reason-

able, a single point DFT-D3/large-basis calculation on the HF-

3c geometries is suggested for improved performance. For

screening applications or scanning of supramolecular potential
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energy surfaces, however, HF-3c seems to be sufficiently

accurate.

Geometries of small proteins

Recently, Martinez et al. composed a set of 58 small proteins

with 5 to 35 residues in length and total charges ranging from

22 to 12.[29] To test the performance of HF-3c, these proteins

were fully optimized starting from the experimental geome-

tries, which were taken from the Protein Databank (PDB).[71]

Eight structures were excluded due to problems with the origi-

nal PDB file (residues were missing or charges could not be

assigned according to Ref. [29]). In case of multiple protein

structures in one PDB file, the first one was always used.

Again, PM6 optimizations were performed for comparison.

During the HF-3c geometry optimization procedure of

almost all proteins, the charged termini of the protein

backbone neutralize via proton transfer from the protonated

amino group to the carboxylate, if they are in close proximity

or close to a lysine and aspartic or glutamic acid. This was also

observed when two of those amino acids are too close. The

protonation states and final charges were determined with

USCF Chimera, which uses an empirical procedure for adding

hydrogen atoms to the protein structure and AMBER ff99SB

parameters[72] to assign the overall charge. Hence, it is not

completely sure whether this is the same protonation state

the protein would adopt in its natural environment. Six final

HF-3c geometries (1T2Y, 2I9M, 2NX6, 2NX7, 2RLJ, 2RMW) ex-

hibit a very small imaginary vibrational frequency below 222

cm21, all other structures are true minima on the PES. In case

of PM6, this hydrogen transfer is observed for only a few pro-

teins. Contrary to the unproblematic HF-3c calculations, the

PM6 optimization of ten proteins showed convergence prob-

lems which could not be solved. Additionally, 13 optimized

Figure 4. a) Contributions to free enthalpy of association (interaction energy DE, RRHO free enthalpy correction DGRRHO and solvation free enthalpy

DdGsolv ). PW6B95-D3/def2-QZVP’//TPSS-D3/def2-TZVP values are taken from Ref. 6 and are shown for comparison. The left bar for each complex always

presents the HF-3c values, the bar in the middle the PW6B95-D3//TPSS-D3 values and the right bar the PM6-DH2//PM6 (pure PM6 results for DE are shown

with narrower bars) values. Not all DGRRHO have been computed at the DFT level. b) Total free enthalpy of association DGa for all supramolecular com-

plexes on the HF-3c, PM6 and PM6-DH2//PM6 levels of theory. Experimental values are taken from Refs. 65–70 and are shown for comparison.
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structures exhibit persistent imaginary frequencies. Neverthe-

less, all structures also with imaginary frequencies are included

in the geometry analysis.

As a first examination, the backbone RMSD between the cal-

culated and the starting experimental geometries was eval-

uated using USCF Chimera.[54] The results are shown in Figure

5. All Ca atom pairs were included, even if the calculated sec-

ondary structure strongly deviates from the reference one. In

this way, the RMSD value gives a hint how good the com-

puted secondary structure is. The minimal RMSD for the HF-3c

geometries is 0.45 Å for 3NJW, the maximal value is 5.21 Å for

2PJV and the average RMSD is 2.02 Å. The average RMSD

between different models of solution NMR structures in the

whole set of 58 proteins is 1.73 Å.[29] Hence, the average

RMSD for the HF-3c geometries is acceptable. In most cases

the general secondary structure is preserved. Figure 6 shows

four protein geometries with a very small RMSD in comparison

to the experimental structures. We consider 13 protein struc-

tures which exhibit a backbone RMSD higher than 2.5 Å (arbi-

trarily chosen threshold) as some kind of outliers and these

are now discussed in more detail.

Figure 7 shows the HF-3c geometries of four proteins with

a high RMSD and the experimental structure in comparison.

The experimentally determined a-helix of 1Y03 is bent but

straight in the HF-3c calculation (Fig. 7a). The opposite

applies for 2JXF (Fig. 7b) and 2OQ9, where the experimental

structure exhibits a straight helix and the calculated geome-

try a bent one. In case of 2PJV (Fig. 7c), 2PV6, 1ODP, and

1O53 the a-helix is strongly distorted compared with the ex-

perimental geometry. For 2ONW (Fig. 7d), 3FTK, 3FTR, and

3NVG the backbone of the experimental structures is more

or less linear whereas it is folded in HF-3c optimized geome-

tries. Protein 2CEH neither has a a-helix nor a b-sheet struc-

ture and the HF-3c geometry is disordered in a different way

than the experimental one. 2RLJ exhibits a larger helix part

when optimized with HF-3c compared to the experimentally

obtained geometry.

In case of PM6, the minimal backbone RMSD is 0.58 Å for

1AQG and the maximal value is 8.81 Å for 2OQ9. The average

backbone RMSD of 2.96 Å is much higher than for the HF-3c

optimized geometries. For more than half of the investigated

proteins, the PM6 structure yields an RMSD larger than 2.5 Å

and in most cases PM6 is not able to reproduce the general

secondary structure.

Standard health checks to characterize the protein struc-

tures were used as described in Refs. [73–75]: (1) clashcores or

steric overlaps greater than 0.4 Å per 1000 atoms, (2) percent-

age of bad side-chain dihedrals or rotamers, (3) number of b-

carbon deviations greater than 0.25 Å from the expected posi-

tion based on the backbone coordinates, (4) percentage of

backbone dihedrals that fall into a favored region on a Rama-

chandran plot and (5) percentage of those, which are Rama-

chandran outliers, (6) percentage of bad bonds, and (7)

percentage of bad angles. These health checks were per-

formed for the calculated as well as the starting experimental

structures. No structural improvements, for example, allowing

Asn/Gln/His flips, were made. To provide one single number

that represents the quality of a protein structure, the MolPro-

bity score was defined as a logarithmic-weighted combination

of clashores, percentage of Ramachandran outliers and per-

centage of bad side-chain rotamers.[73] The averaged results

are shown in Table 4, the individual values for each protein

are provided in the supporting information.

The health check data for the HF-3c structures match the

values obtained for the experimental geometries very well.

The values for clashcores and bad angles are only slightly

higher. The most defective health criterion is the percentage

of bond outliers. Compared to the values published by Marti-

nez et al.[29] for HF-D3/mini the application of the geometrical

counterpoise correction and the additional short-range term in

Figure 5. Backbone RMSD for all optimized protein structures on the HF-3c and PM6 level of theory relative to the experimental starting structure. The

lines between the data points are drawn just to guide the eye.
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the HF-3c method gives an improvement for all health criteria.

This is particularly obvious for the percentage of bond outliers,

which is much smaller for the HF-3c geometries than for the

ones obtained with HF-D3/mini. Compared to the results from

the original publication for HF and the 6–31G basis set, the

HF-3c health criteria are almost compatible. The highest devia-

tion is found again in the percentage of bond outliers. Addi-

tionally, the number of clashcores is substantially smaller for

HF/6–31G than for both HF-3c and experiment. Overall, we

conclude that HF-3c is able to yield good geometries for the

tested proteins. Because the method includes only minor

empiricism and was not parameterized specifically for protein

structures, we think that this conclusion holds in general and

suggest it as a tool in structural biochemistry.

The health checks for PM6 geometries give worse results

than those for HF-3c for most criteria. The number of clash-

cores and the percentage of poor rotamers is higher and the

percentage of favored Ramachandran dihedrals is much

smaller. The results for bond and angle outliers are slightly

better than for HF-3c but overall the PM6 structures are not as

good as the HF-3c ones. Additionally, in many cases the posi-

tively charged guanidinium group of the amino acid arginine

is not planar when optimized with PM6.

In general, HF-3c seems to predict too many hydrogen

bonds (Fig. 8). On average, the calculation yields six hydrogen

bonds too much compared to the corresponding experimental

structures. PM6 shows on average four excessive hydrogen

bonds. The hydrogen bond search was done with USCF Chi-

mera[54] applying default criteria.

To test the influence of the solvent (i.e., artificially neglected

water molecules) on the observed hydrogen transfer and the

excess of hydrogen bonds, five proteins (1ODP, 2EVQ, 2FBU,

2JTA, and 2RLJ) were optimized with HF-3c using the COSMO

model[76] for continuum solvation. The dielectric constant e
was set to 78 for pure water. For all optimizations including

COSMO, considerably less hydrogen transfers are observed.

1ODP and 2RLJ do not show a hydrogen transfer at all. For

the other three proteins, the number of transferred hydrogens

Figure 6. HF-3c structures (gray) for four proteins with a small backbone RMSD in comparison to experimental ones (black). The RMSDs are given in Å.

Hydrogens at carbon atoms in structure (d) are omitted for clarity.

Figure 7. HF-3c structures (gray) for four proteins with a high backbone RMSD in comparison to experimental ones (black). The RMSDs are given in Å.

Hydrogens at carbon atoms in structure (d) are omitted for clarity. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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is reduced from two in case of 2EVQ and 2JTA and four in

case of 2FBU to just one. Regarding the hydrogen bonds, only

the 2FBU structure exhibits more H-bonds in the HF-3c-

COSMO optimization than with plain HF-3c. The other four

proteins exhibit two or three H-bonds less when optimized

with COSMO. Nevertheless, the number of computed hydro-

gen bonds is still higher compared to the experiment. Because

HF-3c performs very well for the structures and energies of all

hydrogen bonded systems in S22 and S66, it is not clear in

how far this conclusion is based on biased experimental data

instead of errors of the theoretical model.

The geometries of all five proteins improve regarding all

health checks when using COSMO in the optimization (for

explicit values see Supporting Information). In particular, the

number of clashcores is reduced and the percentage of Rama-

chandran favored dihedrals is increased. Also the backbone

RMSD relative to the experimental geometry is much smaller,

that is, it decreases by a factor of about two. The largest

improvement was observed for 1ODP, its RMSD is reduced

from 2.656 Å to only 0.956 Å. Thus, inclusion of the COSMO

model in the optimization yields a further improvement to al-

ready good HF-3c protein “gas phase” structures.

Conclusions

A fast method based on a Hartree-Fock calculation with a

small (in part minimal) basis set is presented (dubbed HF-3c

from now on). Three corrections, namely the D3 scheme to

include London dispersion, a geometrical counterpoise correc-

tion to handle intramolecular and intermolecular BSSE and a

short-range term to correct basis set deficiencies for bond

lengths are added to improve the plain HF energy. Detailed

benchmarks for a variety of molecular properties were

presented.

The method is able to yield good geometries for small cova-

lently bound organic molecules, small noncovalent complexes

as included in the S22 and S66 test sets as well as large supra-

molecular complexes. Fully optimized geometries of small pro-

teins with up to 550 atoms yield good results in standard

protein structure health checks and reasonable RMSD agree-

ment compared to experimental structures.

By construction, the method gives a physically sound

description of noncovalent interactions which is reflected in

accurate interaction energies for a variety of systems. The

MAD of the interaction energies compared with theoretical ref-

erence values is only 0.55 kcal/mol for the S22 and 0.38 kcal/

mol for the S66 test set. For 12 supramolecular complexes, the

fully ab initio computed association free enthalpy has an MAD

of 6.2 kcal/mol with respect to experimentally obtained values.

The MAD for the corresponding gas phase interaction energies

is 4.4 kcal/mol. To put this into perspective, dispersion cor-

rected DFT methods yield MADs in the range 2–5 kcal/mol

while MP2/CBS yields an MAD of 16 kcal/mol[6] for the same

set of realistic complexes. For the S66 set the MAD for the

best DFT-D3/large basis variants and MP2/CBS are 0.2–0.3 and

0.45 kcal/mol, respectively.[18]

Compared to widely used semiempirical approaches (PM6

and PM6-DH2 used here as typical examples), the presented

Hartree-Fock based method is slower but generally more

Figure 8. Number of hydrogen bonds for the experimental, HF-3c and PM6 protein structures. The lines between the data points are drawn just to guide

the eye.

Table 4. Averaged health criteria for the HF-3c (50 proteins) and PM6 (41

proteins) optimized structures as well as the experimental starting geo-

metries (50 proteins). Values for HF-D/mini and HF/6–31G were taken

from Ref. 30] for comparison (all 58 proteins).

Exp. HF-3c PM6 HF-D3/mini HF/6–31G

Clashcore/1000 atoms 29 34 54 43 8

Bad side-chain rotamers 19% 13% 21% 18% 10%

Cb deviations 0.2 0.2 0.0 0.5 0.3

Ramachandran outliers 5% 6% 8% 7% 3%

Ramachandran favored 81% 81% 71% 77% 86%

Bad bonds 0.5% 8% 3% 79% 1%

Bad angles 1% 4% 1% 10% 1%

MolProbity score 2.7 3.3 3.9 3.1 1.9
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accurate, robust and numerically stable. It is easier to handle

in large-scale geometry optimizations as shown by the protein

studies. The method can be used routinely even on small

desktop computers to optimize systems with hundreds of

atoms and in parallel it can be applied to those with a few

thousand atoms. Analytical vibrational frequency calculations

are straightforward and the derived statistical thermodynamic

corrections seem to be reasonable. Thus, the HF-3c methods

might be able to fill the gap between semiempirical and DFT

methods in terms of cost and accuracy and is recommended

as a standard quantum chemical tool in biomolecular or supra-

molecular simulations. Current work in our laboratory investi-

gates its applicability for the computation of molecular

crystals.
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