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ABSTRACT: We present a coarse-grained quantum chemical model of organic
photovoltaic materials, which is based on the classic idea that the main physical processes
involve the electrons occupying the frontier orbitals (HOMO and LUMO) of each
molecule or “site”. This translates into an effective electronic Hamiltonian with two
electrons and two orbitals per site. The on-site parameters (one- and two-electron
integrals) can be rigorously related to the ionization energy, electron affinity, and singlet
and triplet first excitation energies of that site. The intersite Hamiltonian parameters are
introduced in a way that is consistent with classical electrostatics, and for the one-electron
part, we use a simple approximation that could be refined using information from atomistic
quantum chemical calculations. The model has been implemented within the GAMESS-
US package. This allows the exploration of the physics of these materials using state-of-the
art quantum chemical methods on relatively large systems (hundreds of electron-donor and electron-acceptor sites). To illustrate
this point, we present ground- and excited-state calculations on dimers and two-dimensional arrays of sites using the Hartree−
Fock, configuration interaction, and coupled-cluster methods. The calculations provide evidence for the possibility of low-energy,
long-range electron transfer in donor−acceptor heterojunctions characterized by a moderate degree of disorder.

I. INTRODUCTION
Organic photovoltaic devices have undergone tremendous
development over the past decade, as testified by their steady
approach to the 10% power conversion efficiency that is often
considered necessary for their large-scale deployment.1 This
progress has been possible thanks to the development of new
electron-acceptor (A) and electron-donor (D) materials, new
electrodes, new device assembly procedures, careful control of
the structure and morphology of the D−A blends, and last but
not least, a better understanding of the physics of these devices.
Even so, there are still significant gaps in our fundamental
knowledge of their inner workings. It is a real challenge to
understand the nature and evolution of the electronic states in
these systems, which are characterized by high chemical
heterogeneity (polymers, oligomers, and small molecules, but
also inorganic semiconductors and metals), different degrees of
thermal and structural disorder, complex morphologies, and
diffuse interfaces.2

In order to shed some light on these complex materials and
devices, a growing number of workers have undertaken their
study from a theoretical or computational perspective.3 Some
people have carried out atomistic4 or coarse-grained5 molecular
dynamics simulations of D−A blends. Snapshots from these
simulations have been sometimes used as an input to
subsequent quantum mechanical or classical (microelectro-
static) calculations of interface energetics and electronic
states.3,4 Unfortunately, these approaches can be extremely
expensive, and it could be argued that even when they are
applied to their full power they are not yet ready to capture the
structural and morphological complexities of real devices.6 In
parallel, others have approached the simulation of whole
photovoltaics devices using coarser and more phenomeno-

logical methods, such as kinetic Monte Carlo (KMC),7 master
equation (ME)8 or drift-diffusion (DD)9 simulations. Often,
also these have been applied on somewhat idealized systems,
but more recently, there have been interesting attempts to
combine them with more realistic models of phase-separating
polymer blends.10 These simulations, however, suffer from the
fundamental shortcoming of being rooted in “classical”
descriptions of the excitons and charge carriers. This implies,
for example, that these quasi-particles are simply assumed to be
localized and to diffuse by a hopping mechanism. Also, such
classical models cannot account for the electron spin. This is an
important shortcoming, due to the growing interest in
increasing device efficiencies by exploting “singlet fission”.11

The previous discussion demonstrates, in our opinion, that
there is a real need for a theoretical and computational model
covering the middle ground between atomistic quantum
chemical descriptions (density functional or semiempirical
molecular orbital theories are the only viable options, given the
complexity of these systems) and more phenomenological
approaches (KMC, ME, and DD). To be useful, such a method
should generate semiquantitative results and, equally important,
qualitative insights. Our purpose here is to propose such a
method. The approach is similar in spirit but different in detail
from that of Troisi,12 who recently studied the generation of
free charges at D−A interfaces from the perspective of electron
transfer theory. It is an approximate but truly many-body
approach, as it avoids the one-electron approximation of
Hückel-like models (see also a recent paper on this topic13). It
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is consistent with classical electrostatics, but unlike it, it does
not assume charge (or wave function) localization.
Sections II−IV contain a description of the basic physical

model and the development of the necessary theory, first for
isolated molecules and then for many interacting ones. Section
V contains our first applications. These are not meant to
provide a comprehensive set of results but rather to illustrate
the kind of insights that can be obtained by application of the
model. Conclusions follow.

II. THE MODEL
Let us consider an assembly of M sites, which may represent
whole π-conjugated molecules (C60 and its derivatives, acenes,
phtalocyanines, etc.), the conjugated fragments within some
long polymer chains (polythiophenes or some of the new
generation copolymers) or as in some lattice models of organic
photovoltaic devices, they may be just a conventional
discretization of the material without any reference to well-
defined molecular features. For simplicity, from now on, the
terms site and molecule will be used interchangeably. The sites
are assumed to be roughly isotropic, so their configuration is
entirely specified by the center-of-mass coordinates Ri (i = 1, 2,
..., M). We also neglect all dynamical phenomena associated
with the nuclear degrees of freedom (incidentally, Troisi12 has
recently pointed that nuclear motions might be unimportant for
charge separation at the D−A interface). Hence, the site
coordinates may be simply assumed to be fixed. On each site i,
there are two basis functions, a “highest occupied molecular
orbital” (HOMO) and a “lowest unoccupied molecular orbital“
(LUMO), respectively, ϕ2i−1(r) and ϕ2i(r). In its ground state,
each site has two electrons within the HOMO orbital. Thus,
there are 2M orbitals and 2M electrons overall.
The orbitals are assumed to be real, normalized, and

orthogonal

∫ ϕ ϕ δ= =k l Mr r r( ) ( )d ( , 1, ..., 2 )k l kl (1)

The orthogonality approximation could be justified on the basis
of the smallness of the overlap integral between the orbitals on
two distinct molecules (the HOMO and LUMO on the same
site would be orthogonal anyway), or by assuming that the ϕk
values have been obtained from the unpertubed orbitals of the
isolated molecules through an intermediate symmetric (Löw-
din) orthogonalization step.14 In any case, by making this
approximation, we follow the path traced by many semi-
empirical molecular electronic structure theories or by the
Hubbard model in solid-state physics.15,16 In fact, below we
shall adopt an INDO-like (intermediate neglect of differential
overlap15,16) approximation, whereby all two-electron integrals
involving a product between orbitals on different sites are
neglected.
In our local orthogonal orbital basis, the nonrelativistic

electronic Hamiltonian may be written in second quantization
form14,16
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where σ and τ are electron spin coordinates, and aiσ
† and ajτ are

electron creation and annihilation operators satisfying the usual

fermion anticommutation rules, respectively. The one- and two-
electron integrals entering the Hamiltonian are (in atomic
units)18
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All the physics of the system is contained in these one- and
two-electron integrals. Our first task will be to derive simple but
physically sound approximations and parametrization schemes
for them.

III. ON-SITE HAMILTONIAN AND ELECTRONIC STATES
We first consider the parametrization of the on-site integrals.
Given a single molecule, we may refer to its HOMO and
LUMO orbitals simply as ϕ1 and ϕ2 (we will resume the full
notation later on). This two-orbital system may be occupied by
two electrons (neutral molecule), but we are also interested in
describing situations with one or three electrons (molecular
cation and anion, respectively). The main electronic states,
which are expected to be relevant for organic photovoltaic
materials, are depicted in Figure 1. Their wave functions may be

written using Slater determinants or in second quantization
through the action of the electron creation operators on the
vacuum state |0⟩.14,16 We have for the ground state of the
neutral molecule

ϕ α ϕ β| ⟩ = | | = | ⟩α β
† †N GS a a,

1
2

(1) (1) (2) (2) 01 1 1 1 (5)

and for the ground state of the cation

ϕ α| ⟩ = = | ⟩α
†C GS a, (1) (1) 01 1 (6)

and for the ground state of the anion
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and for the singly excited singlet state of the neutral molecule
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Figure 1. Main electronic states for a two-orbital site occupied by one,
two, or three electrons. H and L stand HOMO and LUMO orbitals,
respectively. The latter is represented by a dashed line when it is
unoccupied or “virtual”. The orbital energies depend on the state to
indicate that our model goes beyond the independent particle picture
by including electron−electron interactions.
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and finally, for the singly excited triplet state of the neutral
molecule

ϕ α ϕ β
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Notice that we have neglected configuration mixing, in
particular the possible contribution of the doubly excited
configuration to |N,GS⟩. This is a reasonable approximation for
well-separated HOMO and LUMO levels, as will be shown
below when we come to the numerical tests of the theory. The
energies of these electronic states can be obtained by
straightforward application of Slater’s rules or of the algebra
of the second-quantized operators14,16
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We have added a 0 superscript to the one-electron integrals, as
these will be corrected below to account for the interaction
with the other molecules.
We now assume to have at our disposal (from accurate gas-

phase experiments and/or ab initio calculations, but for some
purposes even an “educated guess” should be adequate) the
ionization energy (IE), electron affinity (EA), and singlet and
triplet excitation energies of the molecule (SX, TX,
respectively). These four experimental data are in principle
insufficient to determine the six parameters entering the on-site
Hamiltonian, but the latter can be reduced in number by
assuming that all Coulomb integrals have similar values

≃ ≃c c c1111 1122 2222 (15)

This approximation is reasonable when the HOMO and
LUMO orbitals have comparable spatial extents and they are
roughly located within the same region of the molecule.19 For
large molecules, these conditions are quite compatible with the
orthogonality of ϕ1 and ϕ2. Instead, c1221 is fundamentally
different from the other three integrals because it represents an
exchange interaction. Together with the one-electron “hop-
ping” integrals to be discussed below, these exchange integrals
are the only terms in the Hamiltonian with a nonzero
differential overlap. Their presence is essential in order to
produce a splitting between the excited singlet and triplet states.
Subtracting eq 10 from eqs 11−14 and rewriting everything as a
matrix equation, we find
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The on-site Hamiltonian parameters can be obtained as a
function of the experimental data by a simple matrix inversion:
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Table I demonstrates the application of our procedure on
C70

20,21 and pentacene,22 respectively, taken as typical electron-

acceptor (A) and electron-donor (D) materials. Overall, the
parameters take “reasonable” values with h11

0 < h22
0 ≪ 0 (the

values seem to be small because they are given in atomic units!)
and c1111 ≫ c1221 > 0. At the same time, notice how the very
significant differences between the electronic properties of C70
and pentacene translate into very subtle differences in their
Hamiltonians. The on-site Coulomb integrals are especially
interesting as their values should be roughly related to the
spatial extent of the HOMO and LUMO orbitals, which are
identical in the approximation of eq 15. Assuming for simplicity
a spherical Gaussian charge distribution

ρ ϕ
α
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= − = − α− | − |⎜ ⎟⎛
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⎞
⎠ er r( ) ( )

2 r R
1 1

2 1
3/2
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its self-repulsion integral is
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We may reverse this equation to obtain an estimate of the
spatial extent (the standard deviation) σ1 of the charge
distribution from the integral

σ
α π

= =
c

3
4

3 1
1

1 1111 (20)

Substituting the values in Table I we obtain σ1 = 8.20 a0 = 4.34
Å for C70 σ1 = 7.60 a0 = 4.02 Å for pentacene, which are rightly
comparable to the actual size of these molecules (the Bohr
radius is a0 = 0.52918 Å).

IV. EXTENSION TO MANY MOLECULES
Let us proceed to discuss the electronic Hamiltonian for a
system containing several molecules (we now switch back to
the full notation for the orbital indices). As mentioned above,
we adopt a minimalist INDO-type approach, essentially
retaining only those “classical” terms that are strictly necessary
in order to describe a system of interacting charges. First of all,
the on-site one-electron Hamiltonian must be modified in order
to account for the Coulomb attraction by the positively charged
cores of the other molecules. The LUMO−LUMO matrix
elements become

Table I. Gas-Phase Experimental Data20,22 and On-Site
Hamiltonian Parameters for C70 and Pentacene (C22H14)

a

data (eV) parameters (Eh)

C70 C22H14 C70 C22H14

IE 7.48 6.61 h11
0 −0.3939 −0.3715

EA 2.68 1.35 h22
0 −0.3204 −0.2973

SX 2.44 2.28 c1111 0.1191 0.1286
TX 1.56 1.76 c1221 0.0162 0.0096

aOne Hartree is Eh = 27.211 eV.
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and similarly for the HOMO−HOMO ones (h2i−1,2i−1). The
on-site HOMO−LUMO elements are absent in the isolated
molecules17 (h2i−1,2i

0 = 0), and they will be neglected also in the
many-molecule system, consistent with our INDO-type
approach. On the right-hand side of eq 21, w2i is an optional
term accounting for “diagonal” or “energetic” disorder. It is a
random number drawn from a Gaussian distribution with a
mean of zero and a standard deviation, σw, going from zero (in
which case w2i ≡ 0) to more than 0.1 eV for a very disordered
material23 (for comparison, the thermal energy is kBT = 0.026
eV at room temperature). Next, we approximate the integrals
on the right-hand side by the electrostatic interaction between a
Gaussian charge distribution at Rk (with overall charge Zk; =
+2.0) and a negative Gaussian charge at Ri (see eq 18)
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where erf(x) is the error function and Rik = |Ri − Rk|, while
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This approximationin particular the definition of ν2i,krelies
on the assumption that the positive charge at Rk is not pointlike
(a bare nucleus),18 but it has an extension related the HOMO−
HOMO electron repulsion on that site (see eq 19). The
rationale is that after removing two electrons from a HOMO
orbital we are essentially left with a positive charge distribution
that is the “negative image” of that orbital. Notice also that
because erf(x) ≃ 1 for x ≥ 2, these integrals reduce to the
ordinary Coulomb interaction between two point charges
whenever Rik ≳ 2ν2i,k

−1 , i.e., when the superposition between the
associated charge distributions becomes negligible.
To complete the one-electron Hamiltonian, we need the

“hopping” integrals that couple the orbitals on neighboring
sites. In principle, these can be evaluated by a variety of
quantum chemical approaches, starting from a detailed
atomistic model of the molecules and their mutual arrange-
ment.24 This possibility will be included in future applications
of the model. For the time being, we adopt a simple
approximation, inspired by the results of other studies of
charge transport in organic semiconductors.25 For two orbitals i
and j centered on two sites at a distance Rij, we take

= − −h t eij ij
R R D( )/ij 0

(24)

where tij represents the strength of the coupling between sites
at a distance R0 (the nearest-neighbor distance) and D
determines the spatial range of these couplings. The tij values
are random numbers drawn from a Gaussian distribution with a
mean t0 and a standard deviation σt. The latter can take a value
going from zero (for a crystalline material at low temperatures)
up to a value comparable or even larger than t0 (for an
amorphous material or even a crystalline one at high
temperatures).25 In principle, all these parameters (t0, σt, and
D) could depend both on molecule types (D−D, D−A, and A−
A pairs) and on orbital types (HOMO−HOMO, HOMO−
LUMO, and LUMO−LUMO pairs) and, similarly, for the σw
values, which control the extent of diagonal disorder. Thus,
judging from the size of its parameter space, we see that even

our minimalist model is actually quite rich and could be used to
describe a variety of physical situations.
Finally, the intersite two-electron integrals are given by

δ δ=c cikjl ik jl iijj (25)
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where μij = (2αiαj/(αi + αj)
1/2. Again, notice that the properties

of the erf() function imply that ciijj ≃ 1/Rij for Rij > 2 μij
−1 and,

taking αi = αj, we find that ciijj →ciiii (the related on-site
Coulomb integral) when Rij → 0. Thus, eq 26 interpolates
nicely between the expected long- and short-range behavior.
So far, the theory has been developed under the implicit

assumption that all the interactions occur in vacuo. This would
indeed be appropriate for an all-electron ab initio approach.
However, ours is a semiempirical model in which most of the
electrons are implicit, as they reside in lower-than-HOMO
orbitals. As such, they are essentially inactive, except for the fact
they provide a dielectric medium that can be polarized by
electric fields and charges. To take account of this effect, all the
intersite interactions (eq 22 for electron−nuclear and eq 26 for
electron−electron, plus of course the nuclear repulsion energy)
must be simply rescaled by the relative permittivity ϵr. Here, we
take ϵr = 3.5, which is a typical value for nonpolar organic
materials. Also, the on-site Hamiltonian parameter must be
modified to take account of the dielectric surrounding the
molecules. A polarization-corrected set of data to be fed into eq
17 could be calculated by ab initio calculations within a
polarizable continuum medium,26 but here, we take a simpler
approach. For a first approximation, only the charged states
(cation and anion) will be affected.27 The size of the effect can
be estimated with the Born formula for the (free) energy of
solvation of a charge q of radius rB

28

ε
= − −

⎛
⎝⎜

⎞
⎠⎟W

q
r2

1
12

B r (27)

Using q = ± 1 and radius rB = 5.0 Å = 9.45a0, we obtain |W| =
0.0378Eh = 1.03 eV. This is a significant contribution that
decreases the ionization energy and increases the electron
affinity compared to the gas-phase values

= − | |WIE(dielec) IE(gas) (28)

= + | |WEA(dielec) EA(gas) (29)

These polarization-corrected IE and EA values can be
inserted into eq 17 to obtain a new set of on-site Hamiltonian
parameters. The results are given in Table II. Notice that rB has
been taken equal to half the nearest-neighbor intersite spacing

Table II. Polarization-Corrected Data and On-Site
Hamiltonian Parameters for C70 and Pentacene (C22H14)

a

data (eV) parameters (Eh)

C70 C22H14 C70 C22H14

IE 6.45 5.58 h11
0 −0.2806 −0.2581

EA 3.71 2.38 h22
0 −0.2071 −0.1839

SX 2.44 2.28 c1111 0.0435 0.0530
TX 1.56 1.76 c1221 0.0162 0.0096

aThe calculation assumes a relative permittivity ϵr = 3.5 and a Born
radius rB = 5.0 Å for both materials.
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(see calculations below), but it is also comparable to the σi
values derived from the on-site Coulomb integrals (eq 20).
This seems to be an important condition for a sensible
semiquantitative application of the model.

V. APPLICATIONS
We have implemented our model within the GAMESS-US
code.29 In essence, we simply had to code a few routines that
replace the ab initio one- and two-electron integrals by the
semiempirical ones entering our effective Hamiltonian (eq 2).
This implementation allows us to explore the properties of the
model using any of the wave function-basedas opposed to
density functional-basedground- and excited-state methods
that are already available within GAMESS-US. Below, we
present two sets of calculations, first on a donor−acceptor pair
and then on two-dimensional model heterojunctions.
As a first application of the model, we have computed the

ground and excited states of a donor (D) and an acceptor (A)
at different separations. Their on-site parameters are those of
pentacene and C70, respectively, either in vacuo (Table I) or
within a dielectric medium (Table II). For the intersite one-
electron Hamiltonian, we have taken t0 = 0.08 eV for the
HOMO−HOMO coupling, t0 = 0.00 eV for the HOMO−
LUMO coupling, and t0 = −0.08 eV for the LUMO−LUMO
coupling. Notice that the actual couplings depend on the D−A
separation according to eq 24, with R0 = 10.0 Å and D = 3.5 Å.
These values are somewhat arbitrary, but their orders of
magnitudes are comparable with those expected for many
organic materials.24,25 We have not included any disorder in
this series of calculations (σw = σt = 0.00 eV). Figure 2 shows

the singlet and triplet excitation energies computed by
configuration interaction calculations including only single
excitations (CIS method)30 or in the full version (FCI),31

which for this system includes up to quadruple excitations. The
FCI method obviously produces more states than CIS (there
are also quintet and septet states, which have not been plotted
for clarity), but there is excellent agreement between them for
the lowest lying ones. The excitation energies at long-range
correspond exactly to those of the isolated monomers in Tables

I and II. In the vacuum calculations, the curves for the fifth and
sixth excited states are almost perfectly overlapping, and they
correspond to (D+)...(A−) charge transfer states, which may
have either singlet or triplet spin multiplicities. They have a
clear 1/R dependence, in agreement with this interpretation.
Much higher in energy, there are analogous curves for the
(D−)...(A+) states. In between, the FCI method provides
additional roots with double or multiple excited character.
Figure 2 shows the Mulliken (or Löwdin, because the orbitals
are orthogonal) charges on the D molecule in the lowest lying
states. The ground state (S0) is almost perfectly neutral at all
distances, while the first excited singlet state (S1) acquires a
moderate charge transfer character at the contact distance (R0 =
10 Å). This charge transfer character would increase with larger
interorbital couplings. Instead, the first triplet state (T1) is
everywhere neutral because the larger energy separation
between the (diabatic) neutral and ionic triplet states prevents
a significant mixing between them.
In a dielectric medium (Figure 3, right panel), the energies of

the neutral states are virtually unchanged, while those of the

charge-transfer ones are shifted downward and flattened, as
expected. The ground state remains neutral, while the S1 state
becomes entirely ionic at all distances (see the charges in Figure
3). This occurs because, according to our Born-type
approximation, IE(C22H14) − AE(C70) < SX(C22H14) <
SX(C70) (Table II). Hence, in a dielectric, it takes less energy
to transfer one electron from D to A than to excite one of them.
The T1 state also becomes partly ionic at short distances when
the (D+)...(A−) triplet curve “crosses” the neutral one at R ≃ 15
Å.
As a second example, we discuss a series of HF (Hartree−

Fock), CIS, and CCSD (coupled-cluster with single and double
excitations32) calculations on two-dimensional model hetero-
junctions made up of 15 A and 15 D sites. Figure 4 illustrates
their structure, with the sites colored according to their ground-
state charges (see below). For comparison, we have also done
calculations on analogous systems consisting only of A or D
sites. The sites are placed on a regular square lattice, with a
spacing of 1.0 nm. This distance is compatible with the actual
size of our model D and A molecules (see also the σi values
obtained from the ciiii integrals) and with HOMO and LUMO
density-of-states (DOS) on the order of 1/nm3, which are
typical of many photovoltaic materials.2 We have considered
completely ordered D and A phases (oo-case, where the first

Figure 2. Potential energy curves for the interaction of an A and a D
site, both in in vacuo (left) and in a dielectric (right), calculated with
the CIS (top) or the FCI (bottom) methods.

Figure 3. Distance dependence of the site charges in the ground (S0)
and lowest excited states (S1, T1) of an A−D pair. In the left-hand
panel (vacuum), the T1−CIS curve is underneath the S0 one. In the
right-hand panel (dielectric), the S1−CIS curve is underneath the S1−
FCI one.
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letter indicates diagonal order, the second one off-diagonal
order), phases with diagonal order and off-diagonal disorder
(od-case), and phases with both diagonal and off-diagonal
disorder (dd-case).33 We have assumed that the D−A orbital
couplings are disordered even when the individual phases are
ordered because epitaxial matching between two crystalline
phases is the exception rather than the rule. Table III, together
with Table II for the on-site part of the Hamiltonian,
summarizes the input parameters of these calculations. Again,
these are to some extent arbitrary, but they are quite reasonable
for typical materials. A more systematic exploration of different
parameter combinations would be necessary and interesting,
but this is a long task that we leave for the future.
Figure 4 illustrates the charges on the sites of the model

heterojunctions calculated from the HF and CCSD ground-
state wave functions. A few points are worth noting. The first
one is the almost perfect agreement between the HF and
CCSD charges. This confirms that the HF method already
provides a very good description of the ground state in both
ordered and disordered situations. At the interface between two
ordered phases (oo-case), we observe the formation of a very
weak interfacial dipole. The overall charge on either side of the
interace is only ±0.008 electrons. This weak dipole is in
apparent contradiction with recent work of Linares et al.34 on
the pentacene−C60 interface. In that work, however, it was
demonstrated that the calculated interfacial dipole does not
originate from a partial charge transfer from the donor to the

acceptor but rather from polarization effects that are not
included in our model. After the introduction of the off-
diagonal disorder (od-case), we observe a certain tendency to
charge localization in some energetically favorable sites. There
is of course a large body of literature on disordered systems,
random matrices, and the Anderson localization that is relevant
in this context.35 The sites where charge concentrates are not
necessarily those next to the interface, and indeed there are also
some small positive charges within the A phase and some
negative ones in the D phase. However, the overall charge
within the D and A phases is almost unchanged (±0.008
electrons). The further introduction of on-diagonal disorder
(dd-case with σw = σt, Table III) apparently has little effect on
the charge distribution. The overall charge on the two sides of
the interface is now ±0.010. We point out that all these
calculations have been purposely carried out with the same
random number seed in order to compare systems with
identical portions of the one-electron Hamiltonian. These
calculations would have to be repeated several times with
different seeds in order to accumulate some statistics on
different realizations of the disorder.
Table IV collects the electron correlation energies extracted

from the CCSD calculations. The correlation energies for a

given system (all-A, all-D, or heterojunction) are almost
independent of disorder, as this represents a relatively weak
perturbation. There are, however, important differences
between the two phases. We see that electron correlation is
much more important in the acceptor than in the donor. The
D−A heterojunction has an intermediate behavior, probably
due to a simple averaging effect. All this demonstrates that even
though correlation effects appeared to be negligible on the basis
of the ground-state charges (Figure 4), this might not be
completely true in general. We plan to return to this question
and address it more thoroughly in the future.
The promotion of one electron from the 30 occupied to the

30 unoccupied HF orbitals within the two-dimensional arrays
leads to exactly 900 singlet and 900 triplet excited states. All
these can be readily obtained by a CIS calculation, and Figure 5
presents the resulting DOSs. Both single-phase systems have an
almost Gaussian DOS, respectively, centered around 2.5 eV (A)
and 3.0 eV (D). The width of these DOSs increases appreciably
upon introduction of off-diagonal disorder. By comparison, on-
diagonal disorder produces only an additional minor

Figure 4. Ground-state HF (left) and CCSD (right) charges in the
model two-dimensional heterojunctions.

Table III. Parameters ( in eV) for the One-Electron Hamiltonian in Two-Dimensional Systemsa

all calculations oo-case od-case dd-case

tHH
0 tHL

0 tLL
0 σw σt σw σt σw σt

A phase 0.08 0.04 −0.08 0.00 0.00 0.00 0.08 0.08 0.08
D phase 0.08 −0.04 −0.08 0.00 0.00 0.00 0.08 0.08 0.08
A−D interface 0.00 0.00 0.00 − 0.08 − 0.08 − 0.08

aIn all calculations, ϵr = 3.5, D = 3.5 Å, and R0 = 10 Å (eq 24).

Table IV. Electron Correlation Energies from CCSD
Calculations on Two-Dimensional Systems (absolute values,
in eV)

oo-case od-case dd-case

A−D heteroj. 0.965 0.947 0.951
All-A 1.431 1.400 1.418
All-D 0.499 0.496 0.502
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perturbation, in agreement with our previous discussion of the
ground-state charge distributions. The predominance of the off-
diagonal disorder is at first surprising, but it might be quite
simply related to the greater number of off-diagonal elements in
a large matrix (their number scales as ∼N2 instead of N). This
was observed also in a recent study of the one-electron levels in
model paracrystalline materials.36 The distributions of singlet
and triplet excitation are rather similar, except for the presence
of a triplet peak at low energies (1.5−2.0 eV).
The D−A heterojunctions have a radically different DOS. In

the ordered system (oo-case), this can be described as the
superposition of three or perhaps four Gaussians. The lower
energy one (1.0−2.0 eV) corresponds to electron transfer
excitations from D to A (Figure 6), the middle one (2.0−3.5
eV) to excitations within the single phases, and the higher
energy one (3.5−4.5 eV) to electron transfer from A to D. The
introduction of disorder broadens and merges these peaks
within the DOS. Again, the off-diagonal disorder appears to be
more significant than the diagonal one. The distributions of
singlet and triplet excited states appear to be almost
superposable in these heterojunctions.
Finally, Figure 6 illustrates the charge distributions within the

first excited singlet and triplet states of the heterojunctions. In
all the studied systems, these occur at about 1.1 eV. They all
involve the transfer of almost exactly one electron from the
donor to the acceptor phase. The singlet and triplet charge
distributions are almost identical. This is understandable
because we have two essentially unpaired electrons within
distinct phases. We observe charge delocalization in the oo-case
and localization in the od-case and dd-case. It is surprising that
in these two cases there is virtually no charge within the two
layers of A and D sites forming the interface. Thus, the lowest
energy excitations in these disordered systems already produce
a very loosely bound electron−hole pair. In other words, we
seem to have found a striking example of long-range electron
transfer, similar to that recently discussed by Troisi.12

Further calculations on larger systems are currently being
performed in order to exclude finite-size effects and accumulate
statistically significant data on the latter point. Figure 7 presents

some preliminary results on a few two-dimensional hetero-
junctions containing 132 sites. These have been generated with
different random number seeds for the one-electron Hamil-
tonian, all other parameters being equal to those used for the

Figure 5. Density-of-states from CIS calculations on all-A (top), A−D
(middle), and all-D (bottom) two-dimensional systems of 30 sites.

Figure 6. Charges in the first excited singlet (left) and triplet (right)
states from the CIS calculations on the two-dimensional hetero-
junctions. Note the change in the color scale with respect to Figure 4.

Figure 7. Charges in the first excited singlet states from CIS
calculations on two-dimensional heterojunctions consisting of 66 D
and 66 A sites. The corresponding excitation energies are also
indicated.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400854a | J. Chem. Theory Comput. 2014, 10, 364−372370



smaller arrays (Table III). In fact, they have been selected by us
in order to highlight the possibility of different scenarios. We
see that depending on the specific realization of the disorder
the charges extracted from the first singlet excited state may be
more or less delocalized, as well as more or less “bound” to
each other at the donor−acceptor interface. Notice also that
there is a certain spread in the calculated excitation energies.
Thus, these calculations confirm the possibility of long-range
electron transfer, but highlight also the need of a more
systematic study. This should include also other low-energy
excited states, in addition to the first one.

VI. SUMMARY AND CONCLUSIONS
We have developed and implemented a coarse-grained
quantum chemical model of organic semiconducting materials,
which is based on an effective Hamiltonian with just two
electrons and two orbitals per molecule/site. The model can be
parametrized for specific systems, and it provides a consistent
semiquantitative treatment of their ground, ionized, and excited
states. It covers an interesting middle ground between all-atom
quantum chemical models, which at the moment can only be
used on “small” systems of ≈102 atoms, and models such as
kinetic Monte Carlo or microelectrostatics that are essentially
based on localized “classical” descriptions of the charges/
excitons and their interactions. The model does not assume
localization or delocalization of the electronic wave functions;
hence, it is equally applicable to both ordered and disordered
systems. Although it has been developed with photovoltaic
applications in mind, it is sufficiently general to be useful also
for other organic electronics materials and applications.
The simplicity of the model allows very fast calculations and

greatly facilitates the interpretation of the results. All the
calculations presented here were carried out on a laptop
computer, and we may thus expect to study much larger ones
by moving to parallel supercomputers. The calculations have
already provided evidence for the possibility of low-energy,
long-range, electron transfer in donor−acceptor heterojunc-
tions characterized by a moderate degree of disorder. More
systematic calculations are now being performed in order to
assess the role of different variables in a statistically meaningful
way. For the sake of simplicity, positional disorder of the sites
has been neglected in the present calculations. It could have
been included within the present model in a straightforward
way, but we avoided it in order to keep the number of model
parameters to a minimum and, similarly, for the possibility of a
composition and/or disorder gradient in the direction
orthogonal to the interface.
Our approach could certainly benefit from further validation

studies and methodological extensions. For example, it would
be interesting to know whether it can be meaningfully applied
to realistic configurations of conjugated molecules extracted
from atomistic or coarse-grained simulations. At the very least,
this would require the use of one-electron Hamiltonian
parameters from density functional, ab initio, or semiempirical
quantum chemical calculations.24,25 The assumption of roughly
spherical sites might have to be lifted in order to deal with
systems characterized by strong global or local anisotropy, such
as liquid crystals or long conjugated polymer segments.
Polarization effects resulting from molecular dipoles (and
higher electrostatic moments) have been neglected here, even
though other studies have shown that they can be significant
under certain circumstances.34,37 It would be interesting to
include them, but this has to be done carefully in order to retain

consistency with the continuum electrostatic description
adopted here.
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