Chem 536 and 736 Spectroscopic Identification of Organic Compounds
Fall, 2022
Schedule Numbers: 34495 and 34496

*COURSE INFORMATION

Class Days: M/W
Class Times: 5:00 – 6:15 PM (1700-1815)
Class Location: AH3177
https://SDSU.zoom.us/j/812 8523 1756
Lectures and discussion may also be available for those unable to attend in person.

Instructor: Thomas Cole
tcole@sdsu.edu (preferred)
(619) 594-5579 (office)
Office Hours Location: CSL-210A (no visitors)
M 8:00 – 9:00 AM
https://SDSU.zoom.us/j/86231401115
and Wed 4:00 – 4:45 PM
https://SDSU.zoom.us/j/87538658767

Prerequisites

The prerequisite for those enrolling in Chem 536 is Chemistry 432, with a grade of C or higher. Also recommended is Chemistry 457 and 550 for undergraduates. Those students enrolling in Chem 736 do not have any prerequisites, since they are graduate students.

Enrollment Information

Please include information about enrollment for the course including, but not limited to:

- Students in this class are expected to have covered material found in Chem 232/432, 410A, 457 and 550. It is also assumed that a basic knowledge of spectroscopic methods, UV-Vis, IR, NMR (proton and carbon) and Mass Spectrometry is known. Experience in a research laboratory is also important to better understand the goals of this class.
- Drop deadline: 9/2/2022 at 19:59 (7:59 PM)

Concepts and Scope

Course Objectives:

This class intensively covers modern spectroscopic techniques used to identify and confirm structures of organic products. Problem solving and interpretation of spectra are strongly emphasized in addition to methods used in establishing purity of compounds. This course is based on ACS guidelines for characterization of small molecule suitable for publication and patents.

The purpose and scope of the course including, but not limited to:

- Spectroscopic methods used in the structural determination of organic compounds, establishment of purity and in some cases percentage yields.
This class covers the following topics:

Part 1 General Protocol to Solving Organic Spectral Problems
 - Characterization of Organic Compounds for Publication in ACS journals
 - Methods to determine empirical and molecular formulas

Part 2 UV-Vis
 - UV-Vis spectroscopy and determination of absorption maximum. Use of empirical rules for common functional groups

Part 3 Infrared Spectroscopy
 - Identification of the major organic functional groups.

Part 4 NMR
 - Basics of NMR, instrumentation, active nuclei,
 - Proton NMR, prediction of chemical shifts, spin-spin first and second order couplings and interpretation of proton NMR
 - Carbon-13 NMR, prediction of chemical shifts and interpretation of carbon NMR
 - Other nuclei such as: 3P, 19F, 15N and 11B
 - 2-D NMR, homonuclear and heteronuclear NMR

Part 5 Mass Spectroscopy
 - Low resolution and high resolution.
 - Different ionizations, separation of ions, MS/MS and detection.

Part 6 Quantification
 - Determination of yields, purity, enantiomeric and diasteromeric purities

Please note, there will be no classes or office hours on November 23, just before Thanksgiving.

Student Learning Outcomes:

1. Students will become effective at using infrared spectroscopy to characterize organic and organometallic compounds as well as identify unknown compounds.
 - The fundamental basics of infrared spectroscopy are covered in lecture and supplemented with supporting information, data sheets and examples on blackboard. In class worked problems are used to help develop a systemic approach to understanding interactions between structure and absorption bands that can be used to confirm organic products or identify unknowns.

2. Students will be able to use the basics of proton and carbon NMR for the interpretation of NMR spectra, extracting chemical shifts, coupling constants and integration values to characterize organic compounds and identify unknown compounds. They will also be able to use 2D NMR experiments for the full characterizations of
these compounds. In addition, they will become familiar with other NMR active nuclei in conjunction to the proton and carbon spectra.

- The fundamentals of Nuclear Magnetic Resonance (NMR) spectroscopy are covered in lecture and supplemented with supporting information and examples found on blackboard. After covering 1D proton and carbon NMR, 2D NMR experiments will be explored. In class worked problems are used to illustrate a systemic approach to identifying compound structures and compared to the predicted chemical shifts and coupling patterns to confirm structures. Previous presented techniques, classical analysis and infrared spectroscopy are used in conjunction with NMR to give a more comprehensive identification.

3. Students will be able to use mass spectrometry to determine the chemical formula and interpret electron impact mass spectra for confirmation or identification of compounds. They will also be able to assess different types of mass spectrometry for specific applications used throughout the different areas of chemistry.

- The fundamentals of mass spectrometry are covered in lecture and supplemented with supporting information and examples found on blackboard. The advantages and limitations of the different types of hyphenated mass spectrometers are also covered, highlighting their application to different disciplines of chemistry and the types of molecules studied in those areas. In class problems are worked to give practice and illustrated a systemic approach to identify the molecular formula and functional groups. As before, previous spectroscopic techniques and physical data are used in conjunction with mass spectrometry to give a comprehensive identification of compounds.

4. Students will become proficient in using different spectroscopic techniques to establish the compound purity and evaluate different methods to determine yields as well as percent enantiomer and diastereomer yields and purity.

- Students will examine and assess the advantages, limitations and accuracy of different methods in determining purity and yields. Especial emphasis is centered on enantiomers and diastereomers. These topics are covered in lecture and supplemented with materials found on blackboard.

5. Students will be able to critically evaluate and interpret spectral data for the full and complete characterization of organic and organometallic compounds as well as identify unknown compounds. These characterizations will meet the standards for
publications in American Chemical Society journals and used throughout US patent applications.

- Students will be able to “read” UV-Vis, Infrared, NMR and Mass Spectroscopic spectral data, being able to extract the critical information, organizing this into an acceptable format for publication in the internationally acceptable ACS journals. Students are expected to write an organized analysis of both spectroscopic and physical data that clearly supports the identification of either prepared compounds or unknowns. This written component is used throughout this class and is also used in the oral presentations in class.

- **Real Life Relevance:** This course prepares students for working in industry or academic research involving synthesis or identification of organic compounds. This course is also critical for students doing synthetic work as part of their research project.

- **Relation to Other Courses:** This class is a continuation of material covered in lower division classes such as Chem 232, 457 and 550

Course Materials

- All the material for this class will be found as PDF documents on the class Canvas site and in class lecture notes.
- A highly recommended, but optional text, “Organic Structure Analysis” by P. Crews, J. Rodrigues and M. Jaspars is highly recommended. Other useful texts are listed at the end of the syllabus.

Course Conduct

- Attendance and participation in lectures are most strongly recommended in aiding in mastery of spectroscopy, gauge your progress and reinforce fundamentals.
- PDF copies of the PowerPoint slides will be made available via Blackboard shortly before new topics are begin in lecture.
- A total of at least 10-problem set will be distributed during the semester. These will be lightly graded with a maximum value of 10 points. They must be turned by the due date, generally just prior to the start time of lecture. The problem sets must be submitted as a single PDF file that includes your name within the problem set and as part of file name. The image quality must be suitable to be printed and readable, free of background colors and acceptable contrast. Unsuitable files will have a deduction of points and may not be graded due to poor quality. I will not accept last problem sets after the keys are posted on blackboard. Re-grades are accepted within 1 week from the time that keys are posted. Everyone one present one problem in class as a chalk talk to the class. Their grade for that one problem will be 10 points, replacing that problem set. The other half of the problem sets will be evaluated by an individually in class chalk talk. Students will be able to choose which problem to present when they are distributed in class.
additional problem sets are given out, lowest scores on previous problem sets will be replaced with higher scores on additional problem sets. All problem sets answers must reflect the student’s own work, (see below).

Exams

Examinations:

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Date</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam #1</td>
<td>9/28/22</td>
<td>100 pts</td>
</tr>
<tr>
<td>Midterm Exam #2</td>
<td>11/2/22</td>
<td>100 pts</td>
</tr>
<tr>
<td>Final Exam</td>
<td>12/16/22</td>
<td>150 pts</td>
</tr>
</tbody>
</table>

Two midterm exams will be given during regular lecture times (September 28 and November 2) from 5:00 PM - 7:00 PM. These exams will cover material present in lecture shortly before the exams. While all exams are accumulative, the emphasis is on material covered since the previous exams. The final exam date will be given Friday December 16 at 3:30 – 5:30 PM (1530-1730). The room number will be announced in class after it becomes available. No make-up exams will be given during the semester, it is important that you plan your schedule accordingly. The two 2-hour midterm exams will each be worth 100 points. The final is also a 2-hour exam worth 150 points. Half of this exam is focused on material since midterm exam 2 and the other half is on new material. Excused absences, substantiated by an appropriate written confirmation, will result in no penalty. Unexcused absences will result in a “zero” and will account for an “F” grade for such exam. Make-up exams will only be offered in exceptional circumstances, typically requiring advance notice.

Re-grading of exams must be submitted within one week of posting or exam keys or return of exams which ever comes last. Keys for final exams are not posted nor are exams returned to students. However, students may view final grades exams. Math errors on grading have to time limits.

Graduate Student additional assignment

Graduate students will submit a 5-page new application of a spectroscopic technique to their graduate research project. This short proposal will include the basics of this spectroscopic method, and how it relates to their research project and discussion how this application can is advantageous over existing methods. Also describe in this proposal how this method is developed and optimized.

Grading

Your grade will be determined at the end of the semester. Graduate and undergraduate students are graded using separate curves. Graduate student averages are approximately a B+ while undergraduate students average will be about B or slightly higher.

Grading: Your course grade will be based on 450 points maximum. Your grade will be based on your performance from exams and problem sets.
Undergraduate Students

<table>
<thead>
<tr>
<th>In summary:</th>
<th>Graduate Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Problem Sets @10 pts</td>
<td>100 points 22%</td>
</tr>
<tr>
<td>Midterm Exam 1</td>
<td>100 points 20%</td>
</tr>
<tr>
<td>Midterm Exam 2</td>
<td>100 points 20%</td>
</tr>
<tr>
<td>New Spectroscopic Application report</td>
<td>50 points 10%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>150 points 33%</td>
</tr>
<tr>
<td>Total</td>
<td>450 points 100%</td>
</tr>
</tbody>
</table>

Students with Disabilities

If you are a student with a disability and believe you will need accommodations for this class, it is your responsibility to contact Student Disability Services at (619) 594-6473. To avoid any delay in the receipt of your accommodations, you should contact Student Disability Services as soon as possible. Please note that accommodations are not retroactive, and that accommodations based upon disability cannot be provided until you have presented your instructor with an accommodation letter from Student Disability Services. Your cooperation is appreciated.

Academic Honesty

The University adheres to a strict policy regarding cheating and plagiarism. These activities will not be tolerated in this class. Become familiar with the policy (http://www.sa.sdsu.edu/srr/conduct1.html). Any cheating or plagiarism will result in failing this class and a disciplinary review by Student Affairs.

Examples of Plagiarism include but are not limited to:

- Using sources verbatim or paraphrasing without giving proper attribution (this can include phrases, sentences, paragraphs and/or pages of work)
- Copying and pasting work from an online or offline source directly and calling it your own
- Using information that you find from an online or offline source without giving the author credit
- Replacing words or phrases from another source and inserting your own words or phrases
- Submitting a piece of work, you did for one class to another class

If you have questions on what is plagiarism, please consult the policy (http://www.sa.sdsu.edu/srr/conduct1.html) and this helpful guide from the Library: (http://infodome.sdsu.edu/infolit/exploratorium/Standard_5/plagiarism.pdf)

The California State University system requires instructors to report all instances of academic misconduct to the Center for Student Rights and Responsibilities. Academic dishonesty will result in disciplinary review by the University and may lead to probation, suspension, or expulsion. Instructors may also, at their discretion, penalize student grades on any assignment or assessment discovered to have been produced in an academically dishonest manner.
Resources for students: A complete list of all academic support services—including the Writing Center and Math Learning Center—is available on the Student Affairs’ Academic Success website. Counseling and Psychological Services (619-594-5220) offers confidential counseling services by licensed therapists; you can Live Chat with a counselor at http://go.sdsu.edu/student_affairs/cps/therapist-consultation.aspx between 4:00pm and 10:00pm, or call San Diego Access and Crisis 24-hour Hotline at (888) 724-7240.

Classroom Conduct Standards: SDSU students are expected to abide by the terms of the Student Conduct Code in classrooms and other instructional settings. Prohibited conduct includes:

- Willful, material and substantial disruption or obstruction of a University-related activity, or any on-campus activity.
- Participating in an activity that substantially and materially disrupts the normal operations of the University or infringes on the rights of members of the University community.
- Unauthorized recording, dissemination, or publication (including on websites or social media) of lectures or other course materials.
- Conduct that threatens or endangers the health or safety of any person within or related to the University community, including physical abuse, threats, intimidation, or harassment. sexual misconduct.

Violation of these standards will result in referral to appropriate campus authorities.

Other materials

Land Acknowledgment

For millennia, the Kumeyaay people have been a part of this land. This land has nourished, healed, protected and embraced them for many generations in a relationship of balance and harmony. As members of the San Diego State University community, we acknowledge this legacy. We promote this balance and harmony. We find inspiration from this land, the land of the Kumeyaay.

Inclusion in this Course

The science that we will be discussing is blissfully independent of geography or era, remaining valid (we believe) on planets halfway across the universe as much as here and for billions of years behind us and yet to come. However, the concepts that we will be spending most of our time on in physical chemistry were formulated and recorded primarily in rather specific places and times, in the US and Western Europe over the last 200 years. But it matters that the science itself exceeds these narrow boundaries, and
people of all backgrounds and cultures have contributed to the early development of the science we use today and will contribute to its continued growth in the future.

As scientists, we must all pay attention to the biases that may cause us to misinterpret data, to dismiss potentially valid alternatives, to see from only one perspective. It is our obligation to overcome these biases as much as possible to examine nature with an unfiltered eye. Part of that obligation is appreciating that everyone in the classroom, even the instructor, has a history that has shaped our perspective such that our experience is necessarily limited, and we broaden our ability to understand the world by each of us bringing our perspective to the classroom. Please feel free to ask questions and challenge assertions, but always with respect for others and the understanding that we are all there to learn from one another.

Texts and materials

Recommended Texts

“Organic Structure Analysis” by P. Crews, J. Rodrigues and M. Jaspars

Your class notes will be the basis of the material covered in this class. Fairly extensive spectral data tables will be available on blackboard for your use in this class and hopefully be a value to you afterwards.

Additional Literature References for Qualitative Analysis and Identification of Organic Compounds

Textbooks

Cheronis and Entrikin, "Identification of Organic Compounds"
Kamm, "Qualitative Organic Analysis"
Elvain, "The Characterization of Organic Compounds"
Pasto and Johnson, "Organic Structure Determination"

- Schieder, "Qualitative Organic Microanalysis"
- Shriner, Fuson, Curtin and Morril, "The Systematic Identification of Organic Compounds"
- Siggia, "Instrumental Methods of Organic Functional Group Analysis"
- Wild, "Characterization of Organic Compounds"

Reference Sources

Beilstein, "Handbuch der Organischen Chemie", A formula and name index of the volumes is available. There are frequently Beilstein cross-reference numbers available from a variety of sources. The most recent supplement (5th) is in English. This volume is found in the reference room of the Love Library. For a guide on how to use this most important reference work see: Huntress, "A Brief Introduction to the Use of Beilstein's Handbuch der Organischen Chemie." It may prove to be most useful.

Feigel, "Qualitative Analysis by Spot Tests, Volume II, Organic Applications"
Feiser and Feiser, "Reagents for Organic Synthesis"
Frankel and Patai, "Tables for Identification of Organic Compounds"
Fitton and Hill, "Selected Derivatives of Organic Compounds" (has procedures for preparing derivatives)
Heilbron, "Dictionary of Organic Compounds"
Huntress, "Identification of Pure Organic Compounds"
"Merck Index"
Mulliken, "The Identification of Pure Organic Compounds"
Sandler and Karo, "Organic Functional Group Preparations" (comprehensive)
Vecera and Gasparic, "Detection and Identification of Organic Compounds" (Techniques for purification (crystallization, distillation, sublimation, extraction, etc., functional group tests, derivative reactions.

Complete literature searches may be made using SciFinder.

Selected References to Spectral Literature
 Drago, "Physical Methods in Chemistry"
 Dyer, "Applications of Absorption Spectroscopy of Organic Compounds"
 Lambert, Shurvel, Verbit, Cooks, Stout, "Organic Structural Analysis"
 Pasto and Johnson, "Organic Structure Determination"
 Sadtler Research Labs, Catalogs of UV, IR and NMR spectra
 Williams and Fleming, "Spectroscopic Methods in Organic Chemistry"

Infrared
 Bellamy, "The Infra-red Spectra of Complex Molecules" (one of the most comprehensive books in the field)
 Nakanishi, Koji and Solomon, "Infrared Absorption Spectroscopy"
 Pouchert, "The Aldrich Library of Infrared Spectra"
 Smith "Infrared Spectral Interpretation: A Systematic Approach"

Ultraviolet-Visible
 Jaffe and Orchin, "Theory and Applications of Ultraviolet Spectroscopy"

Nuclear Magnetic Resonance
 Jackman, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry"
 Martin and Zektzer, "Two-Dimensional NMR Methods for Establishing Molecular Connectivity"
 Pople, Schneider and Berstein, "High Resolution Nuclear Magnetic Resonance"
 Pouchert and Campbell, "Aldrich Library of NMR Spectra"

Mass Spectrometry
 Biemann, "Mass Spectroscopy, Organic Chemical Applications"
 Budzikiewicz, Djerassi and Williams, "Mass Spectrometry of Organic Compounds"
 McLafferty, "Interpretation of Mass Spectra"